












(diaPASEF) mode. Quality control of the MS data showed robust
reproducibility for both global precursors and proteins (Fig. S11A,
B). Consequently, we have confirmed that paired spatial
proteomics maintains high quality and provides detailed protein
information regarding the components of the TME.

Therefore, we investigated the differences in signaling path-
ways underlying BC lung metastasis using ssGSEA analysis on
spatial proteomics data. Unsupervised analysis of immunotherapy-
related and hallmark pathways revealed significant intratumoral
heterogeneity across breast and lung samples, indicating both
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patient-related and site-related variability (Fig. 5B). Subsequently,
we conducted an analysis of DEPs between BC tumors and their
paired lung metastases. Notably, SEMA3B, MMP28, and CXCL17,
among others, were up-regulated, while KRT20, COL2A1, and
CD70, among others, were down-regulated (Fig. 5C). Leveraging
the DEPs, we performed GO analysis (Fig. 5D), revealing enriched
biological processes such as positive regulation of cell adhesion
and regulation of chemotaxis, consistent with the functions of up-
regulated proteins in lung metastasis. Conversely, processes like
collagen fibril organization, cytoplasmic translation, and endoder-
mal cell differentiation were enriched in BC tissues. Furthermore,
ssGSEA analysis highlighted the upregulation of apical surface and
KRAS signaling, as well as cholesterol homeostasis, in lung
metastasis, while interferon alpha and gamma responses were
positively regulated in BC tissues compared to lung metastasis. At
the paired sample level, GSEA results unveiled a down-regulated
interferon gamma response in lung metastasis and an upregu-
lated estrogen response in breast tissue samples, consistent with
ssGSEA and GO analyses. Hence, we demonstrated molecular
differences between BC tissues and their paired lung metastases
(Fig. 5E, F).

WGCNA indicated the enriched molecular features associated
with spatial TME components
To explore deeper into the molecular mechanisms underlying the
cellular components within the TME of breast lung metastasis, we
conducted WGCNA. The frequency of TME component cells was
determined using IMC in each ROI. This information was then
correlated with the protein module identified by WGCNA.
Subsequently, the potential biological processes associated with
each TME component were investigated (Fig. 6A). Through
analysis of mean connectivity and scale independence, a soft
threshold of 8 was chosen (Fig. S12A, B). Subsequently, all proteins
were assigned to 11 protein modules using an unsupervised
clustering method (Fig. 6B), with 11 colors representing the
distinct protein modules, each comprising proteins with similar
expression patterns (Fig. 6C). We then correlated the cell
frequencies of identified cell components via IMC with each
module (Fig. 6C). For example, endothelial cell frequency
exhibited a negative correlation with the yellow module, whereas
CD57+ epithelial cell frequency showed a positive correlation with
the yellow module (Fig. 6D, E). Similarly, S100A9+ and HLA-DR+

epithelial cells were both positively correlated with the red
module (Fig. 6F, G). Next, we identified proteins with the highest
protein significance for each cell type, indicating those proteins
most closely associated with the selected cell type (Fig. 6D–G, abs
(protein significance) >0.6). Using these selected hub proteins for
each cell type (Fig. 6H–K), we conducted GO analysis for the
respective cell types (Fig. 6L–O). Endothelial cells exhibited terms
related to cellular energy processes (Fig. 6L), CD57+ epithelial cells
were enriched with oxidative phosphorylation processes (Fig. 6M),
S100A9+ epithelial cells displayed metabolic process enrichments
(Fig. 6N), while HLA-DR+ epithelial cells were associated with lipid
catabolic processes (Fig. 6O). In summary, WCGNA analysis
revealed the molecular characteristics associated with the TME

components during BC lung metastasis, as highlighted by spatial
proteomics analysis.

snRandom-seq analysis of BC lung metastasis
We revealed greater number of endothelial cells in BC lung
metastasis at a spatial level, especially in TNBC. As IMC represents
a small area of TME component in tumor tissues. To further
validate the organ-specific TME of BC lung metastasis at single-cell
resolution on the whole slide level, we performed snRandom-seq
on 3 treatment-naïve FFPE tissue samples from primary BC (n= 3)
and lung metastases (n= 3) using previously reported technology
(Fig. 7A) [27]. The unsupervised clustering analysis classified the
100,235 cells into eight clusters (Fig. 7B). Each cluster was
identified as a broad cell population with its canonical markers
(Fig. 7C). We further calculated the inter-patient and inter-organ
proportions and Ro/e analysis in each cell population to
characterize the organ-specific TME of BC lung metastasis
(Fig. 7D, E). The tissue enrichment of each cell population was
evaluated by Ro/e analysis. Endothelial cells were relatively
enriched in lung metastasis at a FFPE whole slide image level
(Fig. 7E), which is consistent with the previous results from IMC
and mIF. Due to the limitations of snRNA-seq, we were unable to
identify exhausted T cells and HLA-DR+ epithelial cells, as only
RNA expression from nuclei can be extracted from FFPE samples.
Consequently, we re-clustered the endothelial cells to delineate
subpopulation specificity in TNBC lung metastasis, resulting in the
identification of 14 distinct clusters (Fig. 7F). Utilizing markers for
lymphatic and vascular endothelial cells (Fig. 7G), we identified
591 lymphatic endothelial cells and 5431 vascular endothelial cells
(Fig. 7H). Further characterization revealed that the vascular
endothelial cells could be classified into three subtypes: arterial
endothelial cells, general capillary endothelial cells, and venous
endothelial cells (Fig. 7I, J). Notably, general capillary endothelial
cells exhibited relative enrichment in lung metastasis, as observed
at the level of FFPE whole slide images (Fig. 7K). In summary,
snRNA-seq analysis provided insights into the detailed subpopula-
tions of endothelial cells enriched in lung metastasis compared to
those present in primary BC.

DISCUSSION
BC lung metastasis presents a key challenge in clinical manage-
ment, indicating the importance of unraveling the complexities of
the TME and its impact on treatment response [28, 29]. Recent
studies have turned towards spatially organized cell populations
within metastatic lesions as potential therapeutic targets across
various tumor types [30, 31]. Notably, primary and metastatic
tumors exhibit distinct spatial cellular hubs, influencing their
responses to different therapies [32]. Exploring organ-specific
metastasis mechanisms and their unique ecosystems holds
promise for refining treatment approaches [33]. mBC pose a
challenge in obtaining sufficient fresh tissue for conducting
scRNA-seq or spatial transcriptome analysis, as patients with
advanced TNM stage IV mBC often miss the window for surgical
intervention. As a result, the TME of lung-specific metastases using

Fig. 4 Differences in exhausted T cell phenotype between primary breast cancer and lung metastasis. A The mIF staining for CD3 (cyan),
CD8 (yellow), CD31 (green), PDCD1 (red), HLA-DR (purple), Pan-CK (orange) and DAPI (blue) in breast cancer and paired lung metastasis. Scale
bar = 1mm and 100 μm, respectively. B The spatial networks of HLA-DR+ epithelial cells and PD1+ T cells to endothelial cells in breast cancer
and lung metastasis. The white line indicates the connection between cells. The CD3 (cyan), CD8 (yellow), CD31 (green), PDCD1 (red), HLA-DR
(purple), Pan-CK (orange) and DAPI (blue) was shown with the same color in Fig. 4A. Scale bar = 100 μm. C The spatial plot of HLA-DR+

epithelial cells and PD1+ T cells to endothelial cells in breast cancer and lung metastasis. D The pie chart displaying the proportion of distance
from HLA-DR+ epithelial cells and PD1+ T cells to endothelial cells. E HLA-DR+ epithelial and endothelial cell hub in breast and lung metastasis
sites validated by mIF spatial analysis. Cell hub was defined as the region within a 20 μm proximity between the two cell types. HLA-DR+

epithelial cells were labeled with rosein, endothelial cells were labeled with yellow, other cells were labeled with gray, and DNA was labeled
with blue and target marker was labeled with red. F Difference in formation of cell hubs between primary breast tissue and lung metastases in
different subtypes.
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Fig. 5 Paired spatial proteomics unveiled underlying biological mechanism of breast cancer lung metastasis. A Overview of the design
and workflow of mass spectrometry-based spatial proteomics applied to formalin-fixed paraffin-embedded tissue samples from paired
primary and lung metastatic lesions. B Differences in immunotherapy-related and hallmark pathways in each patient and each site revealed by
unsupervised analysis. C Differentially expressed proteins between breast cancer and paired lung metastasis. D–F The potential biological
functions and relevant signaling pathways evaluated by gene ontology analysis, gene set enrichment analysis (GSEA) and single-sample GSEA
analyses.
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Fig. 6 Weighted Gene Co-expression Network Analysis (WGCNA) showing enriched molecular features associated with each TME
component. A Overview of the design for integrated IMC and spatial-proteomics based WGCNA. B Proteins were assigned to 11 cell modules
using an unsupervised clustering method. C Each cell module correlated with cell frequencies of identified cell components via IMC. D–G The
association of protein significance and module membership for selected cell types and protein module showing by Pearson’s coefficient.
H–K The hub proteins identified for the respective cell types. L–O Gene ontology analysis for the respective cell types.
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Fig. 7 TME atlas of primary triple negative breast cancer and lung metastases by scRandom-seq. A Overview of the design for snRandom-
seq. FFPE samples from primary TNBC and lung metastasis were collected for single-cell nuclei transcriptomic sequencing. B UMAP plot of
major cell types from all the samples. C The volcano plot of highly variable genes for the major clusters. D The frequency of each cell cluster
presented as a proportion of total cells in each sample. E Tissue prevalence of each cell cluster estimated by the Ro/e analysis. F UMAP plots of
endothelial cells (ECs) showing distinct subclusters. G Dot plot showing the markers for lymphatic endothelial cell and vascular endothelial
cell. H UMAP plots of lymphatic endothelial cell and vascular endothelial cell. I Dot plot showing the markers for EC arterial cell, EC general
capillary and EC venous. J UMAP plots of all four cell clusters. K Tissue prevalence of each EC cluster estimated by the Ro/e analysis.
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paired samples remains largely unexplored, especially at a single-
cell spatial resolution. In our study, we developed a comprehen-
sive strategy leveraging cutting-edge techniques such as IMC,
spatial proteomics and mIF to explore spatial proteomic and RNA
profiling within BC and paired lung metastatic lesions and identify
potential therapeutic targets. Through the analysis of paired
samples, we delineated the spatial landscape and characterized
the heterogeneous atlas of the TME at a single-cell resolution.
Importantly, all samples utilized in our study were FFPE samples,
allowing for the application of these advanced techniques without
reliance on fresh tissue.
BC reprograms the lung microenvironment to generate pre-

metastatic niches, and pro-angiogenic factors (such as vascular
endothelial growth factor) is one of the initial molecules involved
[3]. Angiogenesis plays a key role in tumor growth and metastasis.
After decades of endocrine and cytotoxic chemotherapy, targeted
therapies have brought new treatment options such as angiogen-
esis inhibitors, HER2-targeted therapies, cyclin-dependent kinase 4
and 6 (CDK4/6) inhibitors [5]. Combination chemotherapy with
bevacizumab and some small-molecule tyrosine kinase inhibitors
(TKIs) targeting angiogenesis may improve the prognosis of BC
patients [5]. Few studies have also explored the use of Endostar in
BC [34, 35]. These clinical treatment options are consistent with
our findings of increased endothelial cells in lung metastases.
Regarding immunotherapy, the introduction of immune check-
point inhibitors in chemotherapy resulted in a higher treatment
response and longer survival, but is currently mainly limited to
TNBC [5]. In the meanwhile, we found that C1QC+ Mac, DC,
GZMB+ CD8+ T cells, proliferative CD8+ T cells were significantly
increased in lung metastases, indicating an immune-exhausted
TME. Hence, both immunotherapy and anti-angiogenic therapy
may act as promising strategies for BCs with lung metastasis.
We further identified a cell module enriched with HLA-DR+

epithelial cells and endothelial cells. This cellular composition
suggests an intricate spatial interaction between HLA-DR+

epithelial and endothelial compartments within the TME. The
differential abundance of HLA-DR+ epithelial and endothelial cell
hub between primary breast tumors and lung metastases high-
lights its dynamic role in the metastatic process. Furthermore, the
observed spatial interactions between endothelial cells and HLA-
DR+ epithelial cells underscore the complex interplay between
angiogenesis and immune activation within the TME by IMC. This
also suggests that interventions targeting both angiogenesis and
immune evasion pathways, such as anti-angiogenic combined
immunotherapy, may disrupt the spatial organization of HLA-DR+

epithelial and endothelial cell hub to enhance therapeutic efficacy.
Li et al. have demonstrated a dose-dependent synergy between
anti-angiogenic therapy and programmed cell death protein-1
(PD-1) blockade, showcasing efficacy in 12 cases of TNBC [36].
However, the scope of this combination strategy remains limited,
necessitating further research to address this limitation. In our
study, the combined use of IMC and mIF enabled us to uncover
the presence of HLA-DR+ epithelial cells and exhausted T cells
clustering around endothelial cells, a phenomenon that was
particularly pronounced in the triple-negative subtype. Leveraging
anti-angiogenic therapy has the potential to disrupt this
specialized cellular hub, leading to the exposure of HLA-DR+

epithelial cells and exhausted T cells. This, in turn, creates an
opportunity for immune checkpoint inhibitor (ICI)-based immu-
notherapy to reverse the exhausted T cells into a cytotoxic
phenotype, thereby making the HLA-DR+ epithelial cells suscep-
tible to targeted intervention.
Moreover, snRNA-seq revealed the TME exhibited a less Treg

phenotype in lung metastasis than that in BC, which indicated the
“reversed” un-exhausted T cells after ICI treatment may play more
crucial roles. Therefore, based on our findings, we proposed that
anti-angiogenic therapy may sensitize BC to PD-1 blockade in
patients with BC lung metastasis, especially in TNBC.

Owing to the limited availability of samples, the comparison
between different molecular subtypes was difficult in this study.
Further collection of surgical specimens is necessary to investigate
the immune heterogeneity between different pathological sub-
types. In addition, more samples are needed to investigate the
impact of differentiation status on the spatial topology of BC lung
metastasis. Due to the limitations of snRNA-seq, the identification
of HLA-DR+ epithelial cells is not feasible. Consequently, this
constraint precludes the analysis of ligand-receptor interactions
between HLA-DR+ epithelial cells and endothelial cells. The other
criticism of this work is the lack of functional aspect of the features
that have been identified from this data analysis.
In summary, we have utilized a comprehensive approach to

depict the spatial multi-omics profiling of paired BC and lung
metastasis samples. Our study identified a spatial endothelial-HLA-
DR+ epithelial cell hub within BC lung metastasis, which may play
a pivotal role in determining response to anti-angiogenic therapy
and immunotherapy. Therefore, our results may help develop
personalized treatment strategies and improve patient outcomes
in BC lung metastasis.

METHODS
Patients and samples
A total of 9 BC patients with oligo-recurrent lung metastasis after surgery
in the First Affiliated Hospital, Zhejiang University School of Medicine
(FAHZU) were retrospectively selected. Matched surgical specimens of
primary breast tumor and lung metastasis were collected. The clinical
features of these patients are shown in Supplementary Table 1. Samples
for IMC, spatial proteomics and mIF were taken from tumor area. This study
was carried out in strict accordance with the standards of the Declaration
of Helsinki and was approved by the Ethics Committee of FAHZU (Ethical
number: IIT20240530A). Informed consent was obtained from all the
patients or their valid proxies.

IMC analysis
Nine samples of primary BC and nine matched lung metastases were
selected for IMC and downstream analysis. The FFPE samples were
successively sliced, and one of the slices was taken from each patient for
hematoxylin-eosin (H&E) staining. Experienced pathologists then identi-
fied one or two regions of interest (ROIs) of 500 × 500 μm2 where immune
cell infiltration was most abundant according to the morphological
structure shown on H&E slides. Immune cell infiltration was characterized
by a large number of small cell clusters that are predominantly blue
stained, ranging from 1000 to 7000 square microns. Immune cells can be
observed both peripherally and internally in tumor tissue. Adjacent
sections were labeled with pre-designed IMC antibodies (Supplementary
Table 2). Based on our previously published study [37], the ROIs were
captured as square regions with a laser intensity of 400 Hz. Then the
collected raw data were preprocessed by overflow signal compensation,
image denoising, image contrast enhancement and cell segmentation.
The individual cell or component in each channel of IMC image was
segmented by the connection-sensing segmentation method [21]. The
region props function in MATLAB was used to identify connected
components within the image for cell segmentation. Artifacts were
eliminated if the centroid of the nearest core exceeded 15 pixels in the
case of other membrane channels. Each marker expression was normal-
ized to the 99th percentile of each channel. The “Harmony” package
(version 0.1.0) and “Rphenograph” (version 0.99.1) with in 100 nearest
neighbors were used separately to correct batch processing effects and
cell clustering. The cluster means were presented in the form of heatmaps
and were utilized for further annotation. The “imcRtools” package (version
1.0.2) was used for IMC downstream data analysis. The 20 nearest
neighboring cells of each cell were determined as cellular neighborhood
(CN) based on Euclidean distance. Then the neighboring cells were
clustered through K-means clustering (k= 15) based on the 29 cell
clusters, along with endothelial cells and epithelial cells [38]. To verified
CNs, the Voronoi diagrams were superimposed over the corresponding
original IMC images. A permutation test method of the “imcRtools”
package (version 1.0.2) was used to evaluate the interactions/avoidance
between different cell clusters within each CN to explore spatial cell-cell
interactions [39].

Y. Gao et al.

12

Oncogene



Tissue distribution of clusters
We calculated the ratio of observed to expected cell numbers (Ro/e) for
each cluster in different tissues to quantify the tissue preference of each
cluster [40, 41]. The expected cell numbers for each combination of cell
clusters and tissues were obtained from the chi-square test. One cluster
was identified as being enriched in a specific tissue if Ro/e > 1.

Spatial proteomics and downstream analysis
Paired FFPE samples of primary breast and lungmetastases were prepared into
4 μm slices. Hydrogel embedding, expansion, staining, imaging, microdissec-
tion, tissue polypeptide recovery, and mass spectrometry of recovered
polypeptides were performed as previously reported [25]. After being treated
with BT buffer and MES buffer, the slices were incubated with protein
anchoring solution for 12 h. The samples were then washed with anchoring
stop buffer, reacted with Activated Monomer Solution in gelation chamber at
4 °C for 12 h for gelation, and transferred to vacuum oven for polymerization
reaction. The resulting tissue-hydrogel composite was immersed in a
homogeneous buffer for expansion. After Coomassie staining and continuous
washing, tissues were imaged using Zeiss Fluorescence Stereo Zoom
Microscope. Microdissection were performed from ROIs in the expanded
Coomassie-stained samples through destaining, dehydration, digestion and
peptide collection. Finally, the samples were analyzed by liquid chromato-
graphy (LC)-mass spectrometry (MS)/MS. The peptide extraction and analysis
are performed using a hybrid trapped ion mobility spectrometry (TIMS)
quadrupole time-of-flight mass spectrometer (timsTOF-Pro) in parallel
accumulation-serial fragmentation combined with data-independent acquisi-
tion Parallel Accumulation Serial Fragmentation (diaPASEF) mode as previous
described [25, 42]. Bruker otofControl (version 6.2) and HyStar (version 5.1)
were used for MS data acquisition. The data-dependent acquisition (DDA) data
were analyzed using the FragPipe (version 15.0) platform and the MSFragger
(version 3.1.1) [43, 44]. The self-built library is further used for analysis of
PulseDIA data by DIA-NN (version 1.7.15) [45]. The differently expressed
proteins (DEPs) analysis was performed using the “limma” package [46]. Gene
Ontology (GO) analysis was performed using the “clusterProfiler” package
(version 4.10.0) [47]. The single-sample gene set enrichment analysis (ssGSEA)
score for each gene set was calculated using the “Gene Set Variation Analysis
(GSVA)” package in R software (version 1.50.0) [48]. Weighted Gene Co-
expression Network Analysis (WGCNA) was performed using the default
parameter and standard pipeline [49].

H&E staining
FFPE samples were continuously sliced into 4μm flakes. The slices were
then successively dewaxed with xylene, rehydrated with graded ethanol,
and rinsed with PBS. Next, the slices were dyed with hematoxylin at room
temperature for half an hour and rinsed again with PBS. Soaking in
ammonia turned the nuclei in the slices from red to bluish-purple. After
cleaning with 75% alcohol for two minutes, the slides were dyed with
eosin at room temperature for 1 h. Then we rinsed the slices directly with
graded alcohol. Finally, anhydrous alcohol was replaced with xylene and
then mounted on slides. The slides were examined using a light
microscope (Leica), and the images were analyzed using Image-Pro Plus
software (version 6.0).

Immunohistochemistry (IHC) staining
BC tissue slides (4 μm) were dewaxed with xylene and rehydrated with
graded alcohol. Microwave heating was used to induce antigen epitope
retrieval and blocking solution (Proteintech, B900780) was then used to
block at room temperature for 1 h. The slides were incubated with primary
antibody against CD57 (1:50, MA5-16948, Invitrogen) overnight at 4 °C.
After washing with PBS for 3 times, the slides were then incubated with a
peroxidase-conjugated (HRP) secondary antibody (31430, Invitrogen) for
10minutes. The slides were examined by a light microscope (Leica) after
dehydration, cleaning, and sealing. The images were analyzed using
Image-Pro Plus software (version 6.0).

mIF staining
FFPE samples of BC and lung metastases were sequentially stained using a
TSA seven-color kit (H-D110071-50T, Yuanxibio). H&E and IHC staining
were performed to test the antibody concentration for mIHC staining
followed by the Society for Immunotherapy of Cancer (SITC) mIF staining
guidelines [50]. The slides were washed successively in tris buffered saline
with tween 20 (TBST) buffer and then transferred to preheated
ethylenediaminetetraacetic acid (EDTA) solution for 30minutes with

microwave heating at 60 °C for dewaxing. After cooling to room
temperature, the slides were incubated with anti-CD3 antibody (1:200,
Abcam) for at least 30 minutes followed by washed with TBST for 3 times.
Then a HRP secondary antibody (#DS9800, Leica) were added and
incubated at room temperature for 10minutes. TSA 520 working solution
was added to the sample area for 10minutes according to the
manufacturer’s instructions, followed by washing with TBST for 3 times.
Repeat the same procedure for subsequent antibodies and fluorescent
dyes in the following order: anti-CD3 (1:200, Abcam)/TSA 480, anti-
CD31(1:200, CST)/TSA 520, anti-CD8 (1:100, Invitrogen)/TSA 570, anti-PD-
1(1:100 CST)/TSA 620, anti-HLA-DR (1:1000, Abcam)/TSA 690, anti-Pan-CK
(1:200, Abcam)/TSA 780. Wash each slide with distilled water and cover
manually. The nuclei were stained with DAPI solution (Thermo Fisher
Scientific, 62248) for 10minutes. Pannoramic 250 FLASH Tissue Imaging
System (3D HISTECH) was used to scan the slides at 20× magnification.

Single-nucleus RNA-seq (snRNA-seq)
The nuclei of paired FFPE samples were extracted for snRNA-seq. The
cross-sectional area of each sample embedded in the paraffin block was be
greater than 0.3 cm2, and 2–3 paraffin rolls from each sample was cut in
total, with the thickness of each roll about 20 μm thick. Total RNA was
extracted from a small amount of tissue for RNA quality control, and the
integrity of RNA was evaluated based on the DV200 value. Follow-up
experiments were only conducted for samples with DV200 greater than
40%. Droplet generation, single cell encapsulation, and cDNA capture were
performed using the VITAcruizer Single-Cell Partitioning System (M20
Genomics). Using VITApilote High-Throughput Single-Cell Transcriptome
Kit for FFPE samples (M20 Genomics), the procedures of dewaxing and
blocking, RNA reverse transcription, single nucleus suspension preparation,
single cell barcoding, cDNA amplification and library construction were
performed successively according to the instructions. Qualified libraries
were then selected for next-generation sequencing through the NovaSeq
6000 sequencing platform (Illumina). The FASTQ files were processed using
VITAseer Bioinformatics Software (M20 Genomics). Specifically, sequencing
reads in FASTQ format were aligned to the human reference genome
(GRCh38) using the default parameters of the STAR software. A raw count
matrix for each sample was generated through unique molecular
identifiers (UMIs) counting and preliminary barcode screening. Following
removal of low-quality or ambient barcodes based on UMI thresholds, the
filtered gene expression matrix within retained high-confidence cell
barcode were then were used for downstream analysis.

SnRNA-seq data analysis
The “Seurat” R software package (version 4.4.0) was used for quality control
and integration. To filter out poor quality data, we first removed genes covered
by fewer than three cells. Then, we filtered out cells expressing <500 or >5000
genes and containing <400 or >25,000 UMIs to exclude barcodes associated
with empty partitions or double units. Doublets and multiplets were removed
using scDblFinder with default parameters. Cells with more than 15%
mitochondria were also removed. The integrated analysis in the Seurat v4
function “IntegrateData” was used to integrate and embed individual cells
from different individuals into a shared low-dimensional space. When the
integral matrix was generated, an unsupervised graph-based clustering
algorithm was used to cluster individual cells based on their expression,
which was implemented in Seurat with default parameters. The “Normal-
izeData” function with default parameters was used to normalize the UMI
count matrix. To transform the normalized gene expression matrix, the natural
logarithm was carried out, and 2,000 highly variable genes were identified by
“FindVariableFeatures” function with “vst”method. All the cell types were then
clustered through these 2000 variable genes. After regressing the UMI-counts,
20 principal component analyses (PCA) were applied to the dataset to reduce
dimensionality. The first round of clustering was performed using the
“FindClusters” function on 20 PCs with a resolution of 1.2, each of which
was annotated with knownmarkers. The Uniform Manifold Approximation and
Projection (UMAP) method was used for nonlinear dimensionality reduction.
Each cluster was characterized using the “FindAllMarkers” procedure in Seurat,
which identified the marker based on the average expressed log fold change
(FC). The Wilcoxon Rank-Sum test by default was used. Characteristic genes
and known lineage-specific markers were used for clustering annotation.

Statistical analysis
R software (version 4.0.4) was used for statistical analyses. Statistical tests
were selected based on data distribution and its variability. Student’s t test,
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Mann-Whitney U test and Kruskal-Wallis test were used to assess statistical
significance. The P-value of DEPs was adjusted with Benjamini and
Hochberg FDR method. The correlation was calculated with Pearson’s
coefficient method. Statistical significance was defined as P < 0.05.

DATA AVAILABILITY
All data generated by this study have been deposited in the Chinese national
genomics data center (https://ngdc.cncb.ac.cn), under accession number NGDC:
OMIX008849. All codes used for association studies are available on request.
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