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Abstract

The advanced single-microbe RNA sequencing (smRNA-seq) technique addresses the pressing need to understand the complexity
and diversity of microbial communities, as well as the distinct microbial states defined by different gene expression profiles. Current
analyses of smRNA-seq data heavily rely on the integrity of reference genomes within the queried microbiota. However, establishing a
comprehensive collection of microbial reference genomes or gene sets remains a significant challenge for most real-world microbial
ecosystems. Here, we developed an unbiased embedding algorithm utilizing K-mer signatures, named mKmer, which bypasses gene
or genome alignment to enable species identification for individual microbes and downstream functional enrichment analysis. By
substituting gene features in the canonical cell-by-gene matrix with highly conserved K-mers, we demonstrate that mKmer outperforms
gene-based methods in clustering and motif inference tasks using benchmark datasets from crop soil and human gut microbiomes.
Our method provides a reference genome-free analytical framework for advancing smRNA-seq studies.

Keywords: K-mer; smRNA-seq; HCK; reference genome-free; K-motif

Introduction
Recently, we developed a high-throughput single-microbe RNA
sequencing (smRNA-seq) technique for microbiome samples [1],
which can generate RNAs from over 5000 single microbes of a
microbial community. This technique can effectively solve the
problem of significant cell heterogeneity among bacterial pop-
ulations and thus achieve complete functional characterization
of host-related microorganisms. However, there is a key chal-
lenge in the smRNA-seq data analysis: constructing a high-quality
gene expression matrix for downstream analysis [2]. Typically,
the construction of a gene expression matrix requires a refer-
ence genome [3]. While the human reference genome is largely
complete and accurate, this is not the case for other organ-
isms. For example, in the case of microorganisms, the quality of
various microbial genomes has been greatly improved with the
help of metagenome-assembled genomes (MAGs) [4] and single-
amplified genomes (SAGs) [5]. However, for some microorganisms,
the quality of their reference genomes and annotated gene sets
still remains uncertain [6]. Additionally, the rapid evolutionary
rate of microorganisms can result in many true variant reads

failing to be aligned to the reference genome. Therefore, relying
solely on a single reference genome may not be the optimal
solution for all samples. These issues are especially pronounced
when sequencing data encompasses multiple unclassified species
(e.g. microbiome data). Any attempt to predefine which species
should be included in the reference genome(s) inevitably intro-
duces bias.

K-mer refers to short sequences of a specific length (K) and any
genomic or RNA sequences are composed of different K-mers. K-
mers have been widely used in bioinformatics analysis, including
genome survey and assembly, and also single-cell omics data
[e.g. [7–9]]. Theoretically, RNAs from a microbiome sample can
be characterized by a specific length of short sequence (i.e. K-
mers). In this study, we developed a new frame of smRNA-seq
analysis (named mKmer) based on high-frequency conserved K-
mer (HCK) rather than a gene expression matrix. Benchmark tests
on seven datasets from soil and gut demonstrate that mKmer
significantly improved species identification compared to the
cell-by-gene matrix. To demonstrate applications of our method,
we used clinical smRNA-seq data from the gut microbiome of
colorectal cancer patients before and after treatment.
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Materials and methods
Single-microbe RNA sequencing data collection
and generation
A total of seven smRNA-seq datasets, four from healthy donors
by our previous study [1] (PRJCA017256), two from a patient,
and one from soybean soil generated by this study, were used
for performance and benchmarking of mKmer. These two fecal
samples were collected from the same patient with colorectal
cancer, both before and after immunotherapy. The study protocol
was approved by the Ethics Committee of the First Affiliated
Hospital, Zhejiang University School of Medicine, China (2021IIT
A0239). The protocols for sample treatment for high-throughput
smRNA-seq followed our previous study [1] and the smRNA-seq
data were generated by M20 Genomics platform.

Quality control of raw data
UMI-tools (v1.1.4) [10] were used to process the unique molecular
identifiers (UMIs) of our smRNA-seq data. We utilized the umi-
tools whitelist for quality control of the raw data to estimate the
number of cells accurately. Given that the raw data file R1 is
∼1 GB, we specified an expected cell number before determining
the actual count. Therefore, the –expect-cells parameter was set to
10 000. The raw data had a barcode length of 20 bp and a UMI
length of 8 bp. To obtain the whitelist, the –bc-pattern was set to
CCCCCCCCCCCCCCCCCCCC NNNNNNNN, and the –set-cell-number
parameter was set to 7000, which corresponded to the cell number
at the inflection point in the barcode rank plot. We then used the
umi-tools extract to filter the raw data files R1 and R2 based on the
obtained whitelist, resulting in cleaned raw data.

During the PCR process of smRNA-seq, some molecules may
have been disproportionately amplified due to sequence charac-
teristics (e.g. Guanine and Cytosine (GC) content) or random fac-
tors, resulting in multiple reads with the same barcode and UMI.
To address this, we employed the RemoveDuplicates within UMI-
tools to retain only the highest-quality read, as determined by the
Phred quality scoring system, among those with the same barcode
and UMI. The sequencing data distinguish each read in the form of
20bp_8bp, so the RemoveDuplicates defaults to the last 29 charac-
ters of the sequence information line in the FASTQ (FASTQ format:
A text-based standard for storing nucleotide sequences and their
quality scores, containing four lines per record: (1) @-prefixed
identifier, (2) nucleotide sequence, (3) +-prefixed separator, (4)
ASCII-encoded quality scores) file as a unique identifier.

Qavg = 1
|Q|

|Q|∑

i=1

(
ord (Qi) − 33

)

if ID /∈ seqs or Qavg > seq [ID] [quality] then

seqs [ID] = {
seq : S, quality : Qavg

}

Let S denote a sequence in the FASTQ file (consisting of four
lines); ID(S) denotes the unique identifier of the sequence S (the
last 29 characters of the first line, i.e. barcode + UMI); Q(S) denotes
the quality string line of the sequence S (the fourth line of the four
lines).

K-mer scanning and counting
Jellyfish (v2.2.10) [11] was used for fast, memory-efficient count-
ing of K-mers in DNA sequences. In our experiment, the –m
parameter of the jellyfish count was set to the default value of 10, to
determine the K-mer length (K). This K corresponds to the smallest
K where the peak in K-mer frequency distribution occurs at x = 1.
The –s parameter was set to the default value of 10 M. To ensure

detection of all high-frequency K-mers, the –h parameter was set
to 100 000 000 based on experimental testing.

To confirm that the selected K value was reasonable, we
observed the distribution of peaks with different K values by
drawing KmerFrequency plots. The –put of the KmerFrequency was
three histo files with different K values specified, and the –out
argument specified the path to the output KmerFrequency plot
file. The histo file generated with the selected K was used as the
input for the KmerRank to create a K-mer rank plot, where the x
value at the inflection point indicates the number of HCKs. We
first transformed K-mer cumulative frequency and count into
logarithmic scales and then calculated first-order derivatives
within the central 80% data range. The knee point was identified
based on the position with maximum absolute derivative. The
jellyfish dump was then used to convert the jf file into a readable
format for extracting the top-counts K-mers.

HCK = select_topN

(
sort[count(Kmers, C), desc]

)

Mji = count(HCKi, Cj)

In the frequency matrix M, a specific element Mji represents
the occurrence count of the i-th HCK in the j-th cell among the
selected HCKs.

Generation of cell-by-high-frequency conserved
K-mer matrix
After detecting each K-mer, they were sorted by detection depth
in descending order. HCKs were then selected based on this sorted
list. Using the generated HCK list, K-mers were read sequentially
from the cleaned R2 reads.

Tk =
N∑

i=1

Ci,k

Ci,k represents the count of K-mers in the i-th sequence of the
FASTQ file.

Ak =
N∑

i=1

I(Ci,k > 0)

Ak represents the number of times the K-mer appears in the
FASTA file, where Ak is 1 if the K-mer appears in the i-th sequence
and 0 otherwise.

cell_seq_vector[c][i] =
L−K+1∑

j=1

I(s[j : j + K − 1] ∈ Ki)

Then, a sequence vector for each cell is generated. L is the
length of the sequence, K is the length of the K-mer, and Kmers
is the set of selected K-mers.

Finally, sort in descending order according to Tk and select the
top M k-mers to generate the cell-by-HCK matrix. To minimize
memory usage during execution, the program generated a cell-
by-HCK matrix for every 1000 cell reads and then merged these
matrices. For ease of use, we integrated the entire process of cell-
by-HCK matrix into a single command named KmerCell. The –
kmercount argument required the kmer_counts_dumps.fa file output
from jellyfish dump (the file suffix must be _counts_dumps.fa);
–fastq required the clean R2 FASTQ file; –topkmer specified the
number of HCKs; and –k specified the selected K.

Identification of microbial species
We employed a K-mer-based root-to-leaf classification strategy
for microbial species annotation, which is integrated in our soft-
ware under the name smAnnotation. We first applied Kraken 2
(v 2.0.7-beta) [12], a K-mer-based read classification method, on
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every read in each barcode based on the standard refseq of Kraken
2(Refseq archaea, bacteria, viral, plasmid, human1, https://be
nlangmead.github.io/aws-indexes/k2). After all the reads were
assigned to each node of different taxonomic levels (e.g. order,
family, genus, species), we calculated the sum of reads in each
node from the leaf to the root. Then, we performed the taxonomic
classification from the root to the leaf taxonomic levels. In the
root taxonomic level, we ranked all the nodes from the highest
to the lowest based on the number of reads of the nodes, and
selected the node with the most reads as a potential annotation
candidate. Based on the annotation results, we then performed
the same annotation process in the next lower taxonomic level,
until the leaf nodes (species level). Then, Bracken (v 2.5) [13] was
used to count the fraction_total_reads of the species classified into
each cell, and the species with the largest value was selected
as the final annotation result. For Kraken 2, the comparison
database was the National Center for Biotechnology Information
(NCBI) standard database by default (Archive size: 60 GB) and the
resolution parameter –r was set to 100. For smAnnotation, clean
R2 as the specified file for –input, and the output file named
smAnnotation.report was placed in the current working directory
by default.

Visualization and clustering
To visualize the data, we further reduced the dimensionality of
all filtered cells using Seurat (v4) [14] and used uniform manifold
approximation and projection (UMAP) to project the cells into
2D space. The annotation results of Kraken 2 and Bracken were
mapped to the Seurat object; only the annotation results with frac-
tion_total_reads values >0.5 were retained, and strains with abun-
dance <0.1% were filtered out. The steps include: (i) Using the
LogNormalize method of the NormalizeData of Seurat to calculate
the expression values of K-mers. The scale.factor argument is set
to the default 10 000, nfeatures to 6000, and the ScaleData object to
all genes; (ii) PCA was performed using the normalized expression
value; among all the principal components, the top 30 principal
components were used to do clustering and UMAP analysis; (iii) To
find clusters, a weighted graph-based clustering method, Shared
Nearest Neighbour (SNN), was selected, and the resolution is set
to 0.5. Marker genes for each cluster were identified with the
MAESTRO test with default parameters via the FindAllMarkers in
Seurat, and the min.pct parameter was set to 0.25.

Gene Ontology annotation by marker K-mers and
motifs
Before performing functional enrichment analysis on sequencing
data from different samples, we first need to filter out Ribosomal
Ribonucleic Acid (rRNA) from the raw transcriptome data. In this
study, we used SortMeRNA (v4.2.0) [15] for filtering, with the
reference dataset including multiple species, such as bacteria,
eukaryotes, archaea, and various sequencing databases, for 5S,
16S, 23S, and other rRNA types. After using the FindAllMarkers, we
obtained a list of marker K-mers, which were used for functional
enrichment analysis of clusters or species of interest. Marker
K-mers are considered to be identified from highly conserved
sequences, which are likely to represent individual motifs. The
functional analysis of bacterial species based on their specific
motifs is reliable. The MEME (Multiple Em for Motif Elicitation)
suite (v5.0.5) [16] is a comprehensive resource for discovering and
analyzing sequence motifs in DNA, RNA, and protein sequences.
Memes [17] is an R package that provides a seamless R interface
to a selection of popular MEME Suite tools. By analyzing the

conserved sequences of each strain, we aimed to elucidate the
specific functions of the strains. To obtain the specific functions
of bacterial species, we designed two partitioning workflows to
conduct Gene Ontology (GO) enrichment analysis on K-mer-
contained motifs (K-motifs).

Nucleotide motif analysis (KmerGOn)
The first analysis workflow involved converting each marker
K-mer into a motif file in MEME format. These motifs were
then compared against motifs in the microbial nucleotide
motif database using the tomtom [18] integrated into the MEME
suite. This step identified the best-matching known motifs.
Subsequently, ama and gomo [19] in the MEME suite were used
to compare the identified known motifs against the Escherichia
coli database, obtaining GO functions for each motif. Finally, GO
functional enrichment and visualization were performed on the
clusters or species of interest.

Protein motif analysis (KmerGOp)
The second analysis workflow utilized SeqKit (v2.8.2) [20, 21] to
translate each marker K-mer into amino acids using six reading
frames (since K = 12, only sequences with 4 AA were retained).
These motifs were then compared against motifs in the all-
species motif database using the tomtom integrated into the MEME
suite. Each protein motif was further analyzed using InterProScan
(v5.47-82.0) [22] to search domain databases (e.g. Pfam, PROSITE,
PRINTS) and obtain GO IDs. Finally, used select of the Annota-
tionDbi (v1.64.1) [23] package to match the corresponding term
and GO ID from the GO.db (v3.18.0) [24] database.

For both workflows, the output list of marker K-mers from the
FindAllMarkers served as the input file. The –cluster was set to the
target cluster, and the –out specified the path to the output file.
This ensured a systematic approach to uncovering the functional
roles of conserved sequences within bacterial species.

Results
Overview of mKmer method
mKmer is a tool for smRNA-seq data analysis by constructing a
cell-by-HCK matrix to achieve efficient cell classification, species
annotation, and functional analysis. The tool is currently divided
into seven analysis modules, including KmerRank and KmerCell,
aiming to provide personalized services for analysts (Fig. 1).
mKmer extracts biological information from raw sequencing data
by testing different K-mer lengths to determine the optimal K
(Fig. 2). This optimal K can identify key conserved sequences while
effectively distinguishing noise from noncritical gene sequences.
In our analysis framework, we successfully identified species
and performed functional analysis for soybean soil samples
and human fecal samples by selecting these HCKs before the
inflection point. This demonstrates that HCKs already densely
contain a large amount of hierarchical information in microbial
taxonomy, enabling precise and efficient classification at various
levels, including domain, phylum, class, order, family, genus, and
species. On the other hand, the low-frequency K-mers contain
sparse taxonomic information, and discarding them does not
affect the classification results. Therefore, HCKs may be trans-
lated into amino acid sequences (i.e. protein motifs) accordingly.
Additionally, HCKs address issues of computational time and
high matrix dimensionality caused by the excessive variety of
K-mers, which significantly enhanced mKmer’s performance and
practicality. Because it does not require any reference genome,
the reproducibility of sequencing reads reached 100%.
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Figure 1. Overview of the mKmer method. There are seven modules in
mKmer for msmRNA-seq data analysis, including read selection, species
annotation, selection of K and HCKs, cell-by-HCK matrix construction,
and functional analysis. Traditional analysis software, such as UMI-tools,
Jellyfish, and Seurat, are also employed in the mKmer pipeline.

K-mer scanning and rank plot
For a raw single-microbe RNA (smRNA) dataset, cells were
selected as usual (such as with UMI-tools), and reads from
the selected cells were filtered to remove duplicates before
the downstream K-mers scanning (Fig. 1). We tested frequency
distributions of different K-mer sizes for the seven smRNA
datasets and found a change of distribution curves happening
between 12-mer and 13-mer in all samples (Fig. 2, for the other
five samples, see Supplementary Fig. S1). Due to the high-
throughput smRNA-seq technique using random primers to
capture RNA of individual cells, the combined amplification and
release yield an average RNA sequencing depth of 1× coverage.
Therefore, low-frequency K-mers with a frequency of 1, where
the K value is at its peak, are considered optimal. The 12-mer
was therefore used as the default size for K-mers scanning. We

further ranked all 12-mers or 13-mers scanned from the smRNA
data by count per cell (Fig. 3, for the other five samples, see
Supplementary Fig. S2). The K-mer rank plot (from highest to
lowest K-mer depth) is an interactive plot that shows all K-mers
detected in a microbiome sample or a smRNA-seq dataset.

Identification of high-frequency conserved K-mers
The overall shape of the K-mer rank plot (Fig. 3A and C) is
similar to the barcode rank plot (Fig. 3B and D). Typically, a “cliff-
and-knee” shape can be observed in the K-mer rank plot of a
microbiome sample. In this case, the steep cliff, followed by the
plateaued knee, demonstrates that the K-mer calling algorithm
was able to distinguish feature K-mers from others. HCKs mainly
come from the evolutionarily conserved regions (e.g. motifs in
protein domains and DNA-binding sites) of bacterial species in
a microbiome sample. As an example, the region of the genus
Staphylococcus HSP60 gene encodes the conserved NdhRMIQE
motif [25], and a high number of K-mers could be counted within
this region (Fig. 4). The conserved K-mers exist in a wide variety
of microbe species in a microbiome. From a microbial taxonomy
perspective, the HCK corresponds to the lowest common ancestor
(LCA) sequence at the taxonomic level. The use of K-mers for
microbial classification has been demonstrated by many classical
K-mer-based metagenomic taxonomy annotation software, such
as Kraken [26], Centrifuge [27], and Kaiju [28]. The HCK was first
discovered and successfully applied in the identification of taxa
in single-cell data.

Identification of maker K-mers
Based on the cell-by-HCK matrix and routine cell clustering and
dimension reduction (as shown in Fig. 1), a visualization result
by the UMAP of an smRNA sample and species annotation can
be obtained (examples shown in Fig. 5B and D, and the cell-
by-gene matrix clustering results of this sample are shown in
Fig. 5A and C). A good clustering of the same species/cells was
observed in the UMAP plot. Further, marker K-mers can be
identified among the different clusters (species or subspecies)
using routine approaches (same as those for marker genes) such
as the Seurat function (FindAllMarkers).

Function annotation by motifs
The marker K-mer can be used for functional annotation based
on their encoding motifs as mentioned above. Based on motif and
domain databases (MEME and Pfam), the DNA motifs and protein
motifs in domains can be identified for GO annotation by mKmer
functions (KmerGOn and KmerGOp), respectively. At the protein
level, the longest translated amino acids (AAs) (4-mer AA) for
marker K-mers (12-mer nt) in a microbiome sample should have
significant sequence similarity to the protein domain’s motifs in
Pfam. The motif-contained K-mers are those highly conserved K-
mers which transcript from the motif-contained regions of orthol-
ogous genes of different microbe species in a microbiome sample.
Using the K-mer-contained motifs and their GO IDs identified,
function analysis such as GO and pathway enrichment can be
done as usual (Fig. 6D).

Benchmark test with cell-by-gene matrix
To compare the performance of mKmer with the traditional
gene matrix-based method, we generated a smRNA-seq dataset
from soybean (Glycine max) soil and collected four publicly
available smRNA-seq datasets from human guts. Firstly, when
comparing the dimensionality reduction and clustering results
using the traditional cell-by-gene matrix (two examples are
shown in Fig. 5A and C; the other three examples of human
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Figure 2. Frequency of K-mer depths by different K sizes for msmRNA-seq datasets from soybean soil (A) and human gut (B) samples. The X-axis
represents the number of times K-mers are detected, and the Y-axis indicates the number of such K-mers.

Figure 3. K-mer rank plot for HCKs (the X-axis represents the position (x) of K-mers sorted in descending order by detection count, and the Y-axis
indicates the average detection count of the top x K-mers) and barcode rank plot (the Y-axis coordinates represent UMI count) calling of the smRNA-seq
data. (A) K-mer rank plot of a soybean soil smRNA-seq (K = 13). (B) Barcode rank plot of the soybean soil smRNA-seq. (C) K-mer rank plot of a human gut
smRNA-seq (K = 12). (D) Barcode rank plot of the human gut smRNA-seq.

gut are shown in Supplementary Fig. S4), regardless of whether
the smRNA-seq data came from soil (Fig. 5A and B) or human
gut (Fig. 5C and D), the cell-by-HCK matrix (Fig. 5B and D) was

more distinct and accurate. In soil samples, numerous bacterial
strains exhibited suboptimal separation in clustering analyses,
with several taxonomically distinct species converging into
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Figure 4. An example of HCKs. A conserved region coding for a motif of the bacterial gene HSP60 (top), and its counts of 12-mers obtained by scanning
Staphylococcus, displayed as a line chart to show the distribution of HCKs (bottom). The motif’s names (nuclear/protein) from the MEME database are
shown at the top. In the middle, the 12-mer composition of the conserved region (S. warned as reference) is shown. The numbers of each 12-mer are
provided at the end of 12-mers.

central clusters. For instance, Streptomyces sp. RLB3–5 (family
Streptomycetaceae), Burkholderia thailandensis (family Burkholderi-
aceae), and Methylorubrum extorquens (family Methylobacteriaceae),
which belong to divergent families, were erroneously grouped
together in the cell-by-gene matrix clustering results (Fig. 5A).
In contrast, the cell-by-HCK matrix effectively resolved these
three species into three distinct clusters (Fig. 5B). A similar
clustering result was also observed for Pedobacter riviphilus,
Mucilaginibacter rubeus and Sphingopyxis sp. DBS4. The human
gut microbiome dataset demonstrated ostensibly clear clustering
patterns in the cell-by-gene matrix analysis, and the apparent
resolution was achieved through implementation of excessively
stringent filtering criteria that drastically reduced both microbial
diversity and abundance. Although such rigorous filtering may
enhance confidence in retained cellular data, it risks substan-
tially misrepresenting the authentic complexity of microbial
ecosystems by systematically excluding low-abundance taxa.
We used the Davies–Bouldin Index [29] (DBI) and Silhouette
Coefficient [30] (SC) to quantitatively evaluate clustering results
for our seven smRNA-seq datasets. The results indicated that
the clustering based on the cell-by-HCK matrix (mKmer) with
a lower DBI or higher SC than the cell-by-gene matrix (STAR)
(Supplementary Table S1), indicating better clustering efficacy

or superior performance. Secondly, among our seven tested
msmRNA-seq datasets, five exhibited a significantly higher
number of species identified by the cell-by-HCK matrix compared
to the cell-by-gene matrix, with five to nine microorganisms
additionally identified per sample.

At the same time, the number of each species in both the
soil and the gut also increased significantly. This is particularly
evident for five species with low or moderate abundance
(number < 300), including Bordetella pertussis, Flavobacterium sp.
CJ75, and Labrys sp. KNU-23 in the soybean soil sample. The
additionally identified strains accounted for 5/21 of the original
strains. In the human gut samples, nine types of microorganisms
were additionally identified, including Agathobacter rectalis,
Faecalibacterium prausnitzii, Parabacteroides distasonis, Phascolarcto-
bacterium faecium, and Sutterella wadsworthensis. Therefore, mKmer
shows significant advantages in species identification in both
complex soil environments and gut environments. This advantage
is particularly pronounced in datasets where the original results
were not very good and the species diversity was relatively low. For
systematic comparison, we mapped raw sequencing data to the
reference genomes of the three most abundant microorganisms
and five additionally identified species to determine their genome
coverage. The total mapping rates for the additionally identified
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Figure 5. . Benchmark results of two samples by cell-by-gene matrix (A and C) and mKmer (B and D). UMAP clustering and species annotation of the
msmRNA-seq data from the soybean soil (A) and human gut (B) samples. The numbers in parentheses are the number of cells of the strain.

species ranged from 5.1% to 15.2% (Supplementary Table S2),
confirming their authentic presence in our sequencing samples.
Notably, Sphingopyxis terrae exhibited an exceptionally high unique
mapping rate of 15.0%. Intriguingly, the microbe was undetectable
in cell-by-gene matrix analyses. The failing was due to that
the original soybean soil microbial reference genome lacked S.
terrae. The mKmer approach resolves this limitation through
its unbiased analytical framework, which enables species-
agnostic characterization without prior knowledge of microbial
community constituents. Moreover, we cumulatively identified
1164 unique K-mers across 23 microbial species. With the
exception of Mucilaginibacter mallensis, unique K-mer signatures
were successfully detected in all four additionally identified
species (Supplementary File S1). Numerous studies have shown
that the five bacterial species only identified by mKmer are
commonly found in soil. S. terrae and F. sp. CJ75 are capable of
degrading complex organic compounds [31, 32]. Mucilaginibacter
mallensis can produce mucilaginous polysaccharides, thereby
improving soil structure and fertility [33]. L. sp. KNU-23 is
widely present in organic matter-rich soils [34]. Surprisingly, B.
pertussis, primarily known as a human pathogen transmitted
through the air, is not commonly found in soil environments,
and its survival in soil has been seldom studied (10.1038/nrmi
cro886). The microbiome of the human gut is being studied more
thoroughly. The species identified by mKmer, such as A. rectalis,
F. prausnitzii, Mediterraneibacter gnavus, Odoribacter splanchnicus, P.
distasonis, P. faecium, Phocaeicola coprophilus, Roseburia intestinalis,

and S. wadsworthensis, are common human gut bacteria based
on the literature [35–43]. Furthermore, genomic alignment of
the corresponding reference species successfully confirmed the
presence of these nine additionally identified microorganisms
(Supplementary Table S3) and eight unique K-mers were
exclusively identified in Phocaeicola vulgatus (Supplementary
File S2).

To further validate the reliability of our results, we applied
the mKmer functions KmerGOn and KmerGOp to in-depth explore
the functions of the mKmer-identified species. The B. pertussis
in soybean soil exhibits a unique ability to bind iron ions in
soybean soil (Supplementary Fig. S3A). Iron is an essential
micronutrient for plant growth, affecting soybean health and
yield. Microorganisms can inhibit the growth of pathogens by
competitively adsorbing iron in the soil, thereby reducing the
occurrence of diseases. Compared to other microorganisms,
acid phosphatase activity is significantly enriched in B. pertussis
(Supplementary Fig. S3B), which can help decompose organic
phosphorus compounds in the soil, releasing inorganic phos-
phorus that plants can absorb, thereby promoting phosphorus
uptake by soybeans and enhancing crop growth. For human gut
smRNA-seq data, the A. rectalis identified by mKmer revealed
processes related to the metabolism of acids, including aconitate
hydratase activity and the dicarboxylic acid metabolic process
using KmerGOn (Supplementary Fig. S3C), consistent with findings
by Abdugheni et al. [35]. In addition, several processes related to
the biosynthesis of amines have been found by KmerGOp, such as
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Figure 6. A case study by mKmer. (A, B) UMAP clustering and species annotation of the pretreatment (A) and posttreatment (B) gut msmRNA-seq data of
a cancer patient using K-mers. (C) Integrated UMAP clustering of bacterial species Phocaeicola. dorei in the patient’s gut before (left) and after treatment
(right) with mKmer. (D) Functional annotation of P. dorei in the gut of treated patients by KmerGOp.

6-pyruvoyltetrahydropterin and tetrahydrobiopterin biosynthesis
(Supplementary Fig. S3D). Taken together, mKmer doesn’t depend
on reference genomes, and can unbiasedly and effectively parse
the complex biological information in smRNA-seq data.

In the computational resource benchmark test, we allocated
an equivalent number of computational threads (20 threads)
to both mKmer and STAR. All smRNA-seq data processing and
runtime operations were performed on a server equipped with
a 64-core/128-thread Intel Xeon E7-4850 v4 processor (2.10GHz
base frequency) and 1843 GB of memory. A detailed comparison
of Central Processing Unit (CPU) time and maximum resident set
size between mKmer and STAR (Table 1) revealed that mKmer
exhibited significantly shorter runtimes than STAR when pro-
cessing the smRNA-seq dataset, with performance improvements
ranging from 19 to 98 times (an average improvement of ∼48
times, a median of 44 times). The memory consumption dur-
ing STAR operation showed a strong correlation with reference
genome size. Since we cannot predetermine the microbial species
in the samples, comprehensive reference genomes such as the
Unified Human Gastrointestinal Genome (UHGG v2.0.2) [44] were
employed. This approach consumes substantial computational
resources (280.2 GB) during execution. Overall, mKmer demon-
strates markedly superior computational efficiency.

A case study using mKmer
To demonstrate the practical applications of mKmer, we collected
fecal samples from a colorectal cancer patient before and after

immunotherapy for single-microbe sequencing. Using mKmer to
analyze the two smRNA-seq datasets, we identified 19 micro-
bial species in the pretreatment fecal sample (Fig. 6A) and 27
species in the post-treatment sample (Fig. 6B, and the cell-by-
gene matrix clustering results of these sample data are shown in
Supplementary Fig. S5). The microbial richness increased by over
one-third, which is conducive to the restoration of a healthy gut
microbiota [45]. Through the analysis of these upregulated marker
K-mers with K-mer-contained motifs, we found that hormonal
regulatory activity and carbohydrate metabolic processes were
enriched in the post-treatment sample (Supplementary Fig. S6).
Further investigation into the shared species between the two
samples, such as Ph. dorei (Fig. 6C), revealed that its populations
in the pre- and post-treatment samples did not cluster together
completely, indicating significant differences in gene expression.
Consequently, we performed an in-depth analysis on functional
changes in Ph. dorei between these two samples. GO enrichment
results for marker K-mers in Ph. dorei (Fig. 6D) showed that func-
tions related to polysaccharide metabolism and outer membrane-
associated defense responses were significantly upregulated in
the post-treatment sample. Studies have shown that short-chain
fatty acids produced by polysaccharide metabolism suggest effi-
cient therapy and good prognosis for colorectal cancer [46]. In
addition, outer membrane binding and periplasmic space may
promote biofilm formation, a process hypothesized to interact
with host immune pathways [47, 48]. In a proteomics analysis,
Kordahi et al. found that Bacteroides fragilis, via key functional
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Table 1. Computational resource comparison. From left to right are the sample names (encompassing all seven samples used in this
study), input file sizes (R1 and R2), alignment software, user time consumed during computation, and maximum resident set size
(max RSS).

Sample R1
(GB)

R2
(GB)

Software User time
(h)

Maximum resident
set size
(GB)

Soybean soil 0.98 2.90 mKmer 0.30 7.40
STAR 9.21 7.15

SAMC1266599 2.56 7.79 mKmer 0.35 8.20
STAR 34.15 280.20

SAMC3766839 0.36 1.00 mKmer 0.27 2.20
STAR 5.00 280.20

SAMC3766837 0.58 1.57 mKmer 0.34 5.08
STAR 7.64 280.20

SAMC3766838 1.78 4.35 mKmer 0.38 2.18
STAR 24.18 280.10

CRC patient
(pretreatment)

2.64 6.81 mKmer 0.84 7.74
STAR44 37.29 280.20

CRC patient
(posttreatment)

3.47 8.86 mKmer 0.81 8.1
STAR 51.86 280.20

Note. The identical maximum resident set size (max RSS) observed across the last five human microbiota samples is due to STAR’s automatic runtime
memory allocation mechanism, which dynamically scales based on the size of the input reference genome.

proteins involved in lipopolysaccharide biosynthesis, induces pro-
inflammatory cytokines by activating the TLR4/NF-κB pathway
[49]. This pathway is directly correlated with the hormone activity
(GO:0005179) and extracellular region (GO:0005576) identified in
our results. Notably, Ph. dorei (formerly classified under Bacteroides)
shares close phylogenetic proximity with B. fragilis and was reclas-
sified as a distinct genus (Phocaeicola) [41]. Additionally, Cheng
et al. employed an integrated analysis of fecal metagenomics and
host proteomics to reveal that functional modules of gut micro-
biota in drug-resistant patients and found that purine/pyrimidine
metabolism and glycerophospholipid metabolic pathways (e.g.
PLA2G4A) were significantly enriched. These pathways are associ-
ated with carbohydrate metabolism (GO:0005975) and metalloen-
zyme activity (GO:0008270) [49]. Therefore, the innovative mKmer
method can help researchers more comprehensively analyze the
dynamic changes of intestinal microecology during immunother-
apy and identify potentially beneficial microorganisms or their
metabolites. These findings warrant validation in larger cohorts
to explore therapeutic applications in colorectal cancer.

Discussion
Our study presents mKmer, a novel reference genome-free
approach for analyzing smRNA-seq data. The use of K-mer for
species taxonomic identification has been demonstrated by
many classical K-mer-based metagenomic taxonomy annotation
software [26–28]. Although these tools classify species based on
DNA, many conserved gene sequences remain highly consistent
within species when DNA is transcripted into RNA. This implies
that RNA sequences also contain species-specific conserved
regions and are useful in K-mer analysis for species identification.
For instance, rRNA and tRNA are widely used in taxonomic
studies due to their significant conservation and variation
among species [50, 51]. Messenger Ribonucleic Acid (mRNA),
on the other hand, reflects gene expression, which varies
significantly between species. By analyzing high-frequency K-
mers in mRNA, species-specific expression characteristics can
be captured. In this study, we discovered the presence of HCKs
in every single-cell sequencing dataset and further used them
as genic sequences for downstream smRNA-seq analysis. By
leveraging the strong correlation between marker K-mers and

K-mer-contained motifs, we further explored and obtained
reliable results on the functions of the microorganisms.

Compared to well-known tools such as STAR (v 2.7.11b) [3]
and Cell Ranger (v 7.1.0), mKmer overcomes the limitations of
incomplete or poorly annotated reference genomes by utiliz-
ing a cell-by-HCK matrix instead of the traditional cell-by-gene
matrix. Currently, MAGs [4] and SAGs [5] can significantly improve
the quality of reference genomes. Using high-quality reference
genomes allows for the accurate identification of marker genes
and their specific functions. Therefore, mKmer still has certain
limitations in functional annotation, but its advantage lies in
efficiently and unbiasedly identifying and distinguishing species.
mKmer requires significantly fewer computational resources and
less processing time compared to STAR (v 2.7.11b), making it
possible to complete the analysis even on a personal computer
(Table 1). Benchmark tests with soybean soil and human gut
smRNA-seq data demonstrated that mKmer captures more data
than the available tools and achieves clearer species clustering.
This is understandable, as both STAR (v 2.7.11b) and Cell Ranger
(v 7.1.0) align the obtained smRNA-seq data to the available refer-
ence genomes that have been sequenced. This process inevitably
introduces biases. Considering the rapid evolution and variation
of microorganisms, using single reference genomes per species
does not align with established facts; alignment failures due to
genetic variations would result in discarding a significant amount
of valuable biological information obtained from the smRNA-
seq. In contrast, mKmer, which operates without the need for
reference genomes, provides a more comprehensive and unbiased
analysis of microbiome samples.

It is well known that single-cell RNA sequencing (scRNA-seq)
data contain numerous empty droplets and some doublets, as
well as other impurity-containing droplets, which can severely
impact the quality of sequencing results. Therefore, removing
impurity information is crucial for single-cell analysis techniques.
By examining the distribution of UMIs and barcodes, high-
quality cells can be effectively filtered. Additionally, aligning to a
reference genome to create a cell-by-gene matrix is an effective
approach to exclude impurities from sequencing results. We know
that the longer the K-mer, the higher its specificity; thus, longer
K-mers are more efficient in detecting impurities. Conversely,
shorter K-mers have higher conservation, which increases
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information utilization when identifying the same species.
mKmer extracts biological information from raw sequencing data
by testing different K-mer lengths to determine the optimal K. This
optimal K can identify key conserved sequences while effectively
distinguishing noise from noncritical gene sequences. As K-mer
gets longer, the sequencing results from each sample showed
a consistent trend (e.g. Fig. 2). Specifically, at a certain K, the
number of K-mers with a frequency of 1 was the highest among
all K-mer frequencies. We interpret K-mers with a frequency of
1 as sequences that are useless for species clustering and may
even be impurities. To effectively filter out useless sequences,
we ranked each K-mer in descending order of frequency and
observed a distinct inflection point (Fig. 3A and C). Based on this,
we consider the high-frequency K-mers before the inflection
point as conservative K-mers (i.e. HCKs), and cells containing
these K-mers are likely derived from a common ancestor (i.e.
LCA) [52]. Therefore, HCKs exhibit high species recognition. The
low-frequency K-mers after the inflection point may indicate that
the taxonomic information contained in these K-mers is sparse,
and they may even interfere with species identification and
differentiation. It is not recommended to use low-frequency K-
mers in the downstream dimensionality reduction and clustering
process. It is undeniable that there may be errors near the inflec-
tion point, where some highly specific conserved K-mers may be
misclassified as impurities. However, this has minimal impact on
species identification across the entire cell set. In our analytical
framework, we select these HCKs at inflection points for species
identification and functional analysis. At the same time, selection
of HCKs addresses issues of computational time and high
matrix dimensionality caused by the excessive variety of K-mers,
significantly enhancing mKmer’s performance and practicality.
Additionally, the high frequency of conserved K-mers means that
they are more likely to come from regions that can translate
conserved protein motifs. These protein motifs have been used for
cross-species functional annotation of scRNA-seq [53]. We further
hypothesize that these HCKs may correspond to motif fragments
of certain gene families within microorganisms. Therefore, by
functionally annotating these gene motifs, mapping them onto
the microbial communities, and performing enrichment analysis,
we can infer the specific functions of the species in the sample.
The key innovations of mKmer, including HCKs, marker K-mers,
and K-mer-contained motifs, enhance species identification and
distinction. This method allows for a holistic view of microbial
communities, advancing our understanding of microbial ecology
and functional roles. Despite these strengths, mKmer still has
room for improvement. For example, species annotation of
Kraken 2 [12] can be corrected based on the clustering results of
mKmer. Furthermore, several advanced microbial metagenomic
analysis tools could be integrated into the downstream analysis
of smRNA-seq data in the future. For instance, PathSeq [54] could
be employed to filter host-derived reads potentially captured
during single-cell sequencing procedures, while high-specificity
marker genes of MetaPhlAn3 [55] may enable more precise
functional profiling of microbial cells. In future developments,
we aim to progressively expand mKmer’s functionality, enhance
its analytical accuracy, and optimize computational performance,
building upon the aforementioned conceptual framework.

Conclusion
mKmer is a reference genome-free approach for smRNA-seq anal-
ysis and allows studies on cellular heterogeneity, marker motif

discovery, and efficiency functional annotation. In this study, we
discovered and defined HCK. More accurate clustering results
confirmed that HCKs densely encapsulate a large amount of
hierarchical information from microbial taxonomy. In benchmark
tests on soybean soil and human gut smRNA-seq datasets, mKmer
can use more smRNA-seq data than the traditional annotated
gene-based methods, achieving more and clearer species clus-
tering for subsequent comprehensive functional analysis. Our
method therefore provides an unbiased way to analyze all species
in smRNA-seq samples and allows diverse microbiomic single-cell
problems to be formulated in a unified way.

Key Points

• An unbiased method for single-cell matrix construc-
tion: mKmer is a reference genome-free approach for
analyzing smRNA-seq data, utilizing K-mers for species
identification and functional annotation, which over-
comes the limitations of traditional tools such as STAR
(v 2.7.11b) and Cell Ranger (v 7.1.0), which rely heavily on
the microbial reference genome and its annotated genes.

• mKmer can identify high-frequency K-mers (HCKs)
based on the inherent data characteristics of different
samples. By using HCKs, it distinguishes conserved bio-
logical sequences from noise, enabling more accurate
and efficient species identification at the single-cell
level, even in mixtures of species.

• Through benchmarking with human and soil samples,
mKmer has been shown to achieve clearer species clus-
tering, capture more data than reference-based meth-
ods, and provide a more comprehensive analysis of
microbial communities.
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