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Abstract

The human body is inhabited by trillions of microorganisms that play a crucial

role in health and diseases. Our understanding of the species and functional

composition of the human gut microbiome is rapidly expanding, but it is still

mainly based on taxonomic profiles or gene abundance measurements. As

such, little is known about the species–function heterogeneity and dynamic

activities in human microecosystem niches. By applying a novel gut‐specific
single‐microbe ribonucleic acid (RNA) sequencing and analytical framework

on three healthy donors with distinct enterotypes, we created a comprehensive

transcriptional landscape of the human gut microbiome and dissected

functional specialization in 38,922 single microbes across 198 species. We

investigated the functional redundancy and complementarity involved in

short‐chain fatty acids related central carbon metabolism and studied the

heterogeneity and covariation of single‐microbe metabolic capacity. Compar-

ing the human gut microbiome at different times throughout the day, we were

able to map diurnal dynamic activities of the gut microbiome and discovered

its association with sub‐population functional heterogeneous. Remarkably,

using single‐microbe RNA sequencing, we systematically dissected the meta-

bolic function heterogeneity of Megamonas funiformis, a keystone species in

Asian populations. Together with in vitro and in vivo experimental valida-

tions, we proved M. funiformis can effectively improve mineral absorption

through exogenous phytic acid degradation, which could potentially serve as a

probiotic that reduces malnutrition caused by deficiency of mineral elements.
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Our results indicated that species‐function heterogeneity widely exists and

plays important roles in the human gut microbiome, and through single‐
microbe RNA sequencing, we have been able to capture the transcriptional

activity variances and identify keystone species with specialized metabolic

functions of possible biological and clinical importance.

KEYWORD S

diurnal dynamic, gut microbiome, metabolism, single‐microbe RNA sequencing, species
functional heterogeneity

Highlights

• Apply a novel gut‐specific single‐microbe RNA sequencing and analytical

framework on three healthy donors with distinct enterotypes.

• Identified diurnal dynamic activities and metabolic heterogeneity involved

in central carbon metabolism in the gut microbiome.

• Demonstrated Megamonas funiformis, a keystone species in Asian popula-

tions, can effectively improve mineral absorption through exogenous phytic

acid degradation.

INTRODUCTION

The human gastrointestinal tract (gut microbiota) consists
of a vast number and variety of microbes significantly
linked to various health and disease conditions [1]. The gut
microbiota plays a crucial role in metabolic processes for
the host, including breaking down complex carbohydrates
and proteins, and producing essential micronutrients and
short‐chain fatty acids (SCFAs) [2]. Functional repartition
within the microbiota is influenced by microbial compe-
tition, niche specialization, and host‐driven selective pres-
sures towards commensalism and functional redundancy
[3]. However, limitations in isolating and cultivating
individual colon bacteria have hindered the functional
characterization of the gut microbes [4]. Enterotypes are
effective in stratifying populations and providing a global
overview of the interindividual variations in gut microbial
composition [5]. The human gut hosts hundreds of
bacterial and archaeal species, with Firmicutes and Bac-
teroidetes being the dominant phyla [6, 7]. Reproducible
patterns of variation in the microbiota, such as the
proportions of major taxa like Bacteroides and Prevotella,
have been observed in the adult human gut [8]. As a result,
our understanding of functional heterogeneity, ecosystem
redundancy and complementarity patterns remains
limited. Significant challenges persist in uncovering
species‐functional activity heterogeneity and redundancy,
impeding groundbreaking insights.

The role of the gut microbiota in regulating circadian
rhythms has significant implications for understanding
various biological and ecological processes. Circadian

rhythms in gut microbiota composition are crucial for
metabolic function, yet the extent to which they govern
microbial dynamics compared to seasonal and lifetime
processes remains unknown [9]. However, our current
understanding of the interactions between the gut micro-
biota and host circadian rhythms relies mainly on changes
in relative microbial abundance, and little is known about
the diurnal dynamic activities of gut microbiomes. To fully
grasp the ecological and evolutionary significance of these
interactions, microbiome studies need to be carefully
designed with the assistance of novel technologies.

Recent advancements in single‐microbe ribonucleic
acid (RNA) sequencing provide opportunities for studying
complex microbial communities to assess microbiota
functional heterogeneity, niche diversification and
adaptative response to host and environmental factors in
single microbe resolution [10]. In this study, we applied
a combination of a gut‐specific single‐microbe RNA
sequencing method and a single‐microbe transcriptional
analytical framework: (1) to create a comprehensive
transcriptional landscape of the human gut microbiome,
and dissected functional specialization in gut species, (2)
to investigate functional redundancy and complementar-
ity involved in SCFAs related central carbon metabolism,
(3) to study heterogeneity and covariation of single‐
microbe metabolic capacity, (4) to map diurnal dynamic
activities of functional microbiome throughout the gut
ecosystem diversity landscape, and (5) to explore microbe
cellular state transitions in distinct colon ecosystems,
and identifying the specialized metabolic functions of
keystone species in the human gut microbiome.
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RESULTS

Experimental design and single‐microbe
RNA sequencing of the human gut
microbiome

Studies on the properties of each enterotype revealed
networks of co‐occurring microorganisms centered
around one indicator taxon: Enterotype‐Bacteroides
(ET‐B) enterotype is best indicated by Bacteroides;
Enterotype‐Prevotella (ET‐P) enterotype is driven by
Prevotella, whose abundance is inversely correlated
with Bacteroides; and Enterotype‐Firmicutes (ET‐F)
enterotype is characterized by an overrepresentation of
Firmicutes [8].

To systematically investigate the transcriptional
activity of the human gut microbiome, we included three
healthy donors with representative enterotypes (ET‐P,
ET‐B, ET‐F) based on metagenomic analysis from our in‐
house clinical cohort [11] (Figure 1A). The ET‐P donor
was dominated by the Prevotella genus, including well‐
studied species such as P. copri [12], P. timonensis [13],
and P. hominis [14]. The ET‐B donor was driven by the
Bacteroides genus, including species like B. dorei [15], B.
xylanisolvens [16], and B. ovatus [17]. In the ET‐F donor,
the most abundant species was Megamonas funiformis
[18], a Firmicutes member. Notably, Megamonas has not
previously been reported as a dominant genus in studies
involving European and American subjects but has been
found in Chinese and Japanese populations [19], sug-
gesting it may be characteristic of Asian populations.
Although several studies have linked M. funiformis to
human health [19, 20], its function within the human
gut microbiome remains poorly understood. To further
explore the diurnal dynamics of the human gut micro-
biome, we collected fecal samples from each donor at
three different times during the day (morning: Time
point1 (TP1), noon: Time point2 (TP2), night: Time
point3 (TP3)) (Figure 1A). All samples were collected
during the same 24‐h time period. We then performed
single‐microbe RNA sequencing (Figure 1B) (see Meth-
ods) and integrated data analysis (Figure 1C) to uncover
species‐function heterogeneity and diurnal dynamic
activities within the human gut microbiome (Figure 1D),
together with the experimental verification (Figure 1E).

In total, we captured over 100,000 gut microbes
among all the samples and retained 38,922 high‐quality
microbes following quality control (see Methods). We
mapped the sequencing reads obtained to the reference
genome of the human gut microbiome from the Unified
Human Gastrointestinal Genome (UHGG) database [21],
ensuring unique alignment to the reference genomes,
and quantified the single‐microbe gene expression level

in each sample (see Methods). For each donor, we
captured a median of over 100 genes, with a total of 2660
genes detected among all the samples (Figure S1A).

Single‐microbe transcriptional landscape
reveals species‐specific functional
characterizations in the human gut

The human gut microbiome comprises a vast number of
microbes with a wide variety of species across different
individuals. To annotate single‐microbe taxonomy within
this complex ecosystem, we used a K‐mer‐based root‐to‐leaf
classification strategy, which has proven efficient for iden-
tifying microbial species in the human gut microbiome
[10]. We identified 198 species among the three donors
(Figure S1B) and selected 30 core species (containing more
than 100 microbes each) for further functional analysis.
Then, we integrated the single‐microbe taxonomic anno-
tations with the uniform manifold approximation and
projection (UMAP) [22] dimension reduction clustering
results (Figure 2A, S2A). As expected, different clusters
corresponded to specific species, with M. funiformis, P. co-
pri, and B. dorei being the most abundant species among
the three donors (Figure 2B). These results demonstrate
that single‐microbe RNA sequencing effectively captures
transcriptional changes, allowing for discrimination of
species‐level differences within the human gut microbiome.

Using the transcriptional clusters corresponding to
each species, we further analyzed the functional char-
acteristics by identifying species‐specific marker genes
(Figure 2C). To compare gene expression levels across
different species, we annotated the genes based on Kyoto
Encyclopedia of Genes and Genomes functional categories
and gene symbols from the UHGG reference genome, and
then identified the highly expressed genes in each species.
In total, we identified 220 functional marker genes among
the 16 species present in the three donors. Among these
functional marker genes, 37 (16.8%) were related to amino
acid metabolism, 15 (6.8%) to energy metabolism, and 6
(2.7%) to fatty acid metabolism (Figure 2D). Notably, a
significant proportion of marker genes (101, 45.9%) were
associated with carbohydrate metabolism, indicating
functional heterogeneity in carbon metabolism among
gut species. These genes were enriched in M. funiformis,
P. copri, P. timonensis, and B. dorei, indicating functional
heterogeneity in carbon metabolism among gut species.

Interestingly, our analysis of the functional marker
genes also revealed species‐specific characteristics related
to sulfur metabolism, bacterial motility, and stress
response (Table S1). For example, Desulfovibrio piger, a
common sulfate‐reducing bacterium in the human colon
[23], significantly expressed two genes, aprA and dsrB,
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FIGURE 1 (See caption on next page).
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that are involved in dissimilatory sulfite reduction
(Figure 2E, S2B). The genus CAG‐81, which is part of the
Lachnospiraceae family commonly found in healthy
humans [24], highly expressed the flagellin gene (hag)
(Figure 2F), which is linked to bacterial motility and
host immune responses. This finding is consistent with
previous studies identifying Lachnospiraceae as major
flagellin producers in the human gut [25]. Additionally,
we observed a high expression level of the Superoxide
dismutase (sodB) gene expression in Bacteroides species,
including B. dorei, B. xylanisolvens, and B. ovatus
(Figure 2G). Bacteroides, known for its oxidative stress
resistance [26], was reported as benefiting from the high
expression levels of sodB. In summary, the single‐microbe
transcriptional landscape revealed species‐specific func-
tional characteristics and helped uncover specialized
function species in the human gut microbiome.

Functional redundancy and
complementarity of SCFAs related central
carbon metabolism

Given the enrichment of carbon utilization genes among
the species‐specific functional marker genes (Figure 2D),
we conducted a more detailed analysis of central carbon
metabolism‐related genes in each species (Figure 3A).

In the first trophic level, we observed peak expression of
genes involved in starch and sucrose metabolism, such as
glgP, pulA, and amyA, in the Prevotella species from the ET‐
P donor (Figure 3B, S3). Prevotella spp. are known
to be enriched in enzymes for the metabolism of various
plant polysaccharides [28]. The lacZ gene, encoding
β‐galactosidase for lactose metabolism, was expressed
in seven species from the ET‐P donor, with the highest
expression level in P. timonensis. Genes involved in galac-
tose metabolism, such as galM and galK, also showed the
highest expression levels in Prevotella species from the ET‐P
donor. Additionally, genes associated with xylan metabo-
lism, including xylA, xylB, and rpe, were more highly ex-
pressed in the Bacteroidetes phylum in ET‐B and ET‐F
donors. This aligns with the results of previous studies
indicating that the predominant xylan‐degrading organisms
in the human colon belong to the Bacteroidetes [29].

In the second trophic level, we observed that the gene
pgm, belonging to the phosphohexose mutase family, was
highly expressed in P. timonensis from the ET‐P donor
and in B. dorei from the ET‐B donor (Figure 3B, S3).
Genes involved in glycolysis showed highest expression
in the dominant species of each donor (Figure 3C, S3).
The pentose phosphate pathway (PPP), essential for
maintaining carbon homeostasis and providing precur-
sors for nucleotide and amino acid biosynthesis [30], also
showed notable gene expression patterns (Figure 3D, S3).
Specifically, the genes zwf and gnd, encoding glucose 6‐
phosphate dehydrogenase and 6‐phosphogluconate
dehydrogenase, exhibited high expression in B. dorei
and Agathobacter rectalis from the ET‐B donor. Further
analysis revealed that genes responsible for complex
interconversion reactions at the core of the non‐oxidative
PPP, such as transketolase (tktA) and transaldolase
(talB), were highly expressed in P. timonensis from the
ET‐P donor and B. dorei from the ET‐B donor. tktA and
talB act as bridges between glycolysis and the PPP by
sharing intermediate metabolites (fructose‐6‐phosphate
and glyceraldehyde‐3‐phosphate) [30]. In glycolysis,
phosphoenolpyruvate (PEP) generated by glycerate‐2P
and catalyzed by enolase forms a crucial node with
pyruvate and oxaloacetate, which lies at the junction
between glycolysis and the tricarboxylic acid (TCA)
cycle, as well as other metabolic pathways [31].

In the third trophic level, phosphoenolpyruvate car-
boxykinase (pckA) and pyruvate kinase (pyk) catalyze the
conversion of PEP to oxaloacetate and pyruvate, respec-
tively. We observed that pckA was most highly expressed
in P. timonensis from the ET‐P donor and in Enterocloster
sp001517625 from the ET‐B donor, while pyk showed
the highest expression in M. funiformis from the ET‐P
and ET‐F donors (Figure 3C, S3). Oxaloacetate is a
key component of the TCA cycle. Genes associated with
the production of oxaloacetate, namely citrate synthase
(gltA), aconitate hydratase (acnA), and isocitrate
dehydrogenase (icd), were most highly expressed in
Bacteroides spp. from the ET‐B donor (Figure 3E, S3).
Genes involved in succinate dehydrogenase, such as frdA
and frdB, exhibited the highest expression in P. timo-
nensis and M. funiformis from the ET‐P and ET‐F donors,
respectively. Malate dehydrogenase (mdh), which

FIGURE 1 Overview of the experiment design and single‐microbe ribonucleic acid (RNA) sequencing of the human gut microbiome.
(A) Overview of the donor selection and sample collections in this study. (B) Workflow of single‐microbe RNA sequencing in human gut
microbiome. (C) Integrated analysis framework of single‐microbe RNA sequencing data. (D) Characterized species‐function heterogeneity,
diurnal dynamic activities and microbe cellular fates transitions. (E) Experimental verification of the key specialized function species
(Megamonas funiformis). ET‐B, Enterotype‐Bacteroides; ET‐F, Enterotype‐Firmicutes; ET‐P, Enterotype‐Prevotella; SCFA, short‐chain fatty
acids; TP1, Time point 1; TP2, Time Point 2; TP3, Time point 3.

UNCOVERING DYNAMIC METABOLIC FUNCTIONS OF HUMAN GUT MICROBIOME | 5 of 25



FIGURE 2 (See caption on next page).
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catalyzes the reversible oxidation of malate to oxalo-
acetate [32], was found to have high expression levels in
seven species from the ET‐F donor, with the highest
in M. funiformis. Pyruvate, a central metabolite for the
production of various chemicals, is metabolized by
L‐lactate dehydrogenase (ldh) to generate lactate [33].
The gene ldh showed the highest expression in Fusica-
tenibacter saccharivorans from the ET‐B donor. Formate
acetyltransferase (pflD), which catalyzes pyruvate to
formate, was highly expressed in P. timonensis from the
ET‐P donor. The gene por, which converts pyruvate into
acetyl coenzyme A (acetyl‐CoA), was expressed in
11 species, with the highest expression in E. sp001517625
from the ET‐B donor. Notably, the gene cat1, which
catalyzes CoA transferase reactions [34], was highly
expressed in Phascolarctobacterium succinatutens. This
observation is consistent with the results of previous
studies indicating that P. succinatutens uses succinate as
a substrate rather than carbohydrates for growth in
energy‐limited environments, a strategy for survival in
the human gut [10, 34]. In summary, single‐microbe
RNA sequencing revealed functional redundancy and
complementarity patterns in central carbon metabolism
among distinct bacterial species in the human gut
microbiome.

Heterogeneity and covariations of
single‐microbe metabolic functions
in the human gut

Given the changes in metabolism‐related genes observed
in our single microbe analysis (Figure 2D), to systemati-
cally dissect the metabolic capacity heterogeneity, we
conducted a single‐microbe metabolic gene enrichment
analysis for each species (Figure 4A). We developed
Microbe‐Metabolism (MIC‐Metabolism) for this purpose
(Figure 4B), which involves three steps: (1) metabolic
gene functional annotation, (2) ranked‐based metabolic

enrichment score (MES) generation, and (3) permutation‐
based MES normalization and activity inference for
each species (for additional details see Methods). Then,
we applied MIC‐Metabolism on the single‐microbe RNA
sequencing data from three donors to evaluate metabolic
pathway activities in each species (Figure 4C,D).

In the ET‐P donor, we observed peak MES for path-
ways involved in glycolysis and pyruvate metabolism in
Prevotella spp. (P. copri and P. timonensis) and M. funi-
formis (Figure 4D). This is consistent with our findings
in Figure 3, suggesting these species dominate carbon
metabolism in the gut microbiome. Additionally, we
found significant activation of the sulfur metabolism
pathway in D. piger, consistent with our results shown in
Figure 2E. For the ET‐F donor, we noted peak MES for
pathways involved in the TCA cycle, glycolysis, and pyru-
vate metabolism in M. funiformis (Figure 4E), as well as
peak MES for propanoate metabolism in B. dorei. In the
ET‐B donor, peak MES was observed for pathways involved
in propanoate metabolism in B. dorei, and further analysis
indicated activity in other Bacteroides species as well
(Figure 4F). This supports previous studies identifying
Bacteroides as a dominant group in propanoate metabolism
[35]. In summary, these Asian population findings indicate
that single‐microbe RNA sequencing combined with
MIC‐Metabolism effectively captures the metabolic activity
of each species in the human gut microbiome.

Given the presence of B. dorei and M. funiformis in
different enterotype donors, we conducted a comparative
analysis to investigate the metabolic capacity of these
species across donors. Pathways such as glycolysis,
pyruvate metabolism, and the TCA cycle showed signif-
icantly lower activity in the ET‐F donor compared to
the ET‐B donor (Figure 4G). M. funiformis exhibited
peak MES for pathways related to carbon metabolism in
both donors. However, in the ET‐P donor, the MES
for bacterial secretion systems, protein export, and
arginine biosynthesis pathways were significantly higher
compared to the ET‐F donor. Conversely, pathways

FIGURE 2 Single‐microbe transcriptional landscape of the human gut and the species‐specific functional characterizations.
(A) Uniform manifold approximation and projection (UMAP) of the gut microbes with taxonomic annotation colored by species.
(B) Phylogenetic tree plot showing the taxonomic proportion of the gut microbes from nine samples in the three donors. (C) Dot plot
showing the functional marker genes in each species. (D) Sankey plot showing the function of species‐specific marker genes in three donors.
(E) UMAP color by the gene aprA (marker of Desulfovibrio piger) expression level, violin plot showed the expression level of genes (aprA and
dsrB) in sulfur metabolism, the pathway diagram illustrates the function of the genes in the “Dissimilatory sulfite reduction.” (F) UMAP
color by the gene hag (marker of CAG‐81 sp900066535) expression level, violin plot showed the expression level of gene hag (flagellin),
which related with microbe motility. (G) UMAP color by the gene sodB (marker of Bacteroides dorei) expression level, violin plot showed the
expression level of gene sodB (superoxide dismutase), which catalyzes the conversion of superoxide radicals to oxygen and hydrogen
peroxide, protecting cells from the toxic byproducts of aerobic respiration. ET‐B, Enterotype‐Bacteroides; ET‐F, Enterotype‐Firmicutes; ET‐P,
Enterotype‐Prevotella; FeSOD, iron superoxide dismutase; ROS, reactive oxygen species; TP1, Time point 1; TP2, Time Point 2; TP3, Time
point 3; UMAP, uniform manifold approximation and projection.
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related to energy metabolism, such as oxidative metab-
olism, had higher MES in the ET‐F donor (Figure 4H).
These results indicate metabolic capacity heterogeneity
of gut species across different human gut microbiomes.

To investigate the activity of metabolic capacity
relationships between different species, we performed a
correlation analysis of MES in each donor's gut micro-
biome. In the ET‐P donor, we found that highly activated

(A) (B)

(D)

(C)

(E)

FIGURE 3 (See caption on next page).
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carbon metabolism species like P. timonensis and
M. funiformis were significantly co‐activated. In the ET‐F
donor, the MES of B. dorei was significantly positively
correlated with Enterocloster sp000431375 (Figure 4I,J).
Further analysis of different functional metabolic path-
ways in the ET‐P donor's gut microbiome revealed that
P. timonensis and P. copri were significantly co‐activated
in carbohydrate metabolism pathways. Additionally, the
MES of P. timonensis was significantly positively corre-
lated with M. funiformis in lipid metabolism pathways
(Figure S4). In energy metabolism pathways, the MES
of P. copri was significantly positively correlated with
M. funiformis (Figure S4). These findings suggest that the
activity of different metabolic functions can be covaried
by multiple coexisting bacteria species in distinct human
gut microbiome.

Diurnal dynamic activities associated with
sub‐population functional heterogeneous

To comprehensively examine the dynamic functional
activity of the human gut microbiome at single‐microbe
resolution, we performed the analysis on three healthy
subjects at three different time points within 1 day
(Figure 1). Unsupervised clustering analysis of the single‐
microbe RNA sequencing datasets from the three donors
revealed significant transcriptional alterations between
different time points in each species (Figure 5A). To
further explore whether the different transcriptional‐
level of genes based on time or gene itself, we identified
time‐specific marker genes for species displayed in the
figure (Figure 5B and Table S2). In those species, we
observed a fewer number of marker genes in TP2 among
the three donors. Conversely, a significantly higher
number of marker genes in these species were present in
TP3 in the ET‐P donor. Interestingly, further investiga-
tion found the identified time‐specific genes were sig-
nificantly enriched in the species‐specific marker genes
(p< 0.05, Chi‐square test) (Figure 5B) among three

donors, which suggested that species marker genes
contribute more dynamic activities in the human gut
microbiome. Additionally, gene functional analysis
revealed that most time‐specific marker genes were
related to carbohydrate metabolism and amino acid
metabolism (Figure 5C).

To further evaluate the diurnal dynamics of meta-
bolic pathway activities in each species, we generated the
MES for each pathway using MIC‐metabolism at each
time point. Comparing the MES across different time
points revealed significant heterogeneity in the dynamic
activities of different species within the human gut mi-
crobiome (Figure 5D). For example, in the ET‐P donor,
the MES for the TCA cycle, glycolysis, and pyruvate
metabolism pathways showed similar dynamic patterns
in P. copri, P. timonensis, and M. funiformis. In contrast,
in the ET‐B donor, only B. dorei exhibited dynamic
changes in these pathways compared to other species.
Additionally, in the ET‐F donor, we observed opposite
dynamic patterns between M. funiformis and other spe-
cies like B. dorei and CAG‐81 sp900066535. We also
conducted a MES correlation analysis to investigate
pathway activity co‐occurrence patterns between species.
Pyruvate metabolism and glycolysis pathways were co‐
activated in P. copri, P. timonensis, and M. funiformis in
the ET‐P donor. However, in the TCA cycle, there was a
negative correlation between M. funiformis and P. copri
(Figure 5E). In summary, our metabolic pathway activity
and correlation analyses revealed the complexity of
dynamic activity relationships between different species
in the human gut microbiome, potentially influenced by
circadian rhythms, diet, and microbiome niches.

Since we observed dynamic activity of bacteria in
human gut microbiomes, we hypothesize that the diurnal
dynamic activities might be caused by the sub‐population
functional heterogeneous. To test this hypothesis, we
extracted the dominant species, B. dorei, and P. copri
cells, from the ET‐B and ET‐P donors and performed sub‐
clustering analysis in each species. Among the three sub‐
clusters in the P. copri, one subcluster which enriched in

FIGURE 3 Functional redundancy and complementarity of short‐chain fatty acids (SCFAs) related central carbon metabolism.
(A) Heatmap showing the expression level of the genes involved in carbohydrate metabolism. The species within the sample phylum were
ordered according to the barcode number. The transcripts per million (TPM) of each species was calculated as following: TPM= (reads/
mean detected reads of species) *1,000,000. The pathway diagram shows the galactose metabolism, starch and sucrose metabolism and
pyruvate metabolism respectively (B), glycolysis (C), pentose phosphate pathway (PPP) (D) and tricarboxylic acid (TCA) cycle (E). In the
context of the human gut microbiome, primary degraders (first trophic level) with specialized machinery hydrolyze complex
polysaccharides, releasing sugars accessible to other species. Primary fermenters (second trophic level) either liberate these sugars or acquire
them from other microbes, funneling them through glycolysis to produce phosphoenolpyruvate (PEP), which is used for substrate‐level
phosphorylation to generate organic acids (e.g., formate, acetate, succinate) or alcohols. Secondary fermenters (third trophic level) use these
by‐products to produce SCFAs that affect mucosal and systemic immune responses [27]. PP pathway, pentose phosphate pathway; SCFA,
short‐chain fatty acids; TCA cycle, tricarboxylic acid cycle; TPM, transcripts per million.
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TP3 showed significantly higher metabolic activities than
others. The genes fba and pckA, were found to be ex-
pressed higher in cluster 1 of P. copri (Figure 5F and
Table S3). In B. dorei of ET‐B donor, we identified five

functional clusters of cells based on differentially
expressed genes, including oxidative phosphorylation
cells (cluster 0), mutA+ propanoate metabolism cells
(cluster 2) and aspA+ alanine, aspartate and glutamate

FIGURE 4 (See caption on next page).
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metabolism cells (cluster 3) (Table S3). We also observed
that at different time points in ET‐B donor, B. dorei
exhibited different functional clusters. For example, the
cells in functional cluster “oxidative phosphorylation
cells” were specifically enriched in TP3, while the func-
tional cluster “aspA+ alanine, aspartate and glutamate
metabolism cells” were enriched in TP1, and the func-
tional cluster “mutA+ propanoate metabolism cells” were
enriched in TP2 (Figure 5G). These results showed that
the diurnal dynamic activities were associated with the
sub‐population functional heterogeneous of the human
gut microbiome.

Cell state transitions of Megamonas
funiformis in distinct colon ecosystems

M. funiformis is a characteristic species in the gut
microbiomes of Asian populations [19]. Despite its rec-
ognized importance for human health [20], its in situ
metabolic patterns and roles within the complex gut
microbial community are under‐characterized. Through
MIC‐metabolism analysis, we found that M. funiformis
exhibits metabolic variation across different donors' gut
microbial communities (Figure 3). To further investigate
the functional heterogeneity of M. funiformis cells, we
extracted the annotated M. funiformis cells from the
single‐cell transcriptomes for clustering and functional
dissection. Among all the M. funiformis cells, we identi-
fied seven distinct clusters based on UMAP clustering
analysis (Figure 6A), demonstrating that species‐level
microbes can be further categorized into different func-
tional sub‐populations. Clustering analysis revealed that
clusters 0, 2, and 6 were predominately from the ET‐F
donor, clusters 1, 3, and 5 from the ET‐P donor, and
cluster 4 was present in both donors (Figure 6A, S5A,B).

Next, we analyzed the functional characteristics of
the clusters by identifying marker genes and evaluating
metabolic capacity. In cluster 2, which primarily con-
sisted of cells from the ET‐F donor, we found high
expression of genes related to protein folding, such as

clpB and chaperonins (dnaK and htpG). Cluster 3, mainly
from the ET‐P donor, showed significant expression of
genes involved in arginine biosynthesis, inositol phos-
phate metabolism, protein export, and biofilm formation
(Figure 6B and Table S3). Given the high number of
marker genes in cluster 3, we conducted an enrichment
analysis on these genes (Figure S5C). We further calcu-
lated and compared the MES across clusters to identify
activated pathways. Cluster 0 exhibited the highest
MES for central carbon metabolism pathways, including
the TCA cycle, glycolysis, and pyruvate metabolism
(Figure 6C). In contrast, cluster 3 showed significantly
higher MES for inositol phosphate metabolism and pro-
tein export compared to other clusters (Figure 6D,E).

To investigate the dynamic transformation of cellular
states driven by functional genes, we performed pseu-
dotime analysis [36] on M. funiformis cells. This analysis
revealed three distinct cell fate trajectories (Figure 6F):
undifferentiated cells (primary trajectory, 951 cells),
multiple function cells (cell fate 1, 869 cells), and stressed
cells (cell fate 2, 2403 cells). Multiple function cells were
characterized by specific functional genes, such as those
encoding protein translocase subunits (secY and secA),
genes involved in arginine biosynthesis (argB‐D, argF‐G,
argJ), and genes involved in inositol phosphate metabo-
lism (iolB, iolD‐E, iolG, iolI). Stressed cells were marked
by high expression level of chaperonin genes related to
intrinsic cellular stresses. The predicted cell metabolic
fate trajectories moved from undifferentiated cells to
multiple‐function cells and stressed cells.

The pseudotime analysis also revealed 269 genes that
co‐vary across the cell state transitions (Figure 6F), with
77 of these genes significantly enriched in two metabolic
states involving in eight pathways (Figure 6G). Notably,
cells with multiple functions were determined by the
Wilcoxon rank‐sum test (p< 0.001) to be significantly
more active than stressed cells in the “Biofilm formation
‐ Escherichia coli” pathway. Enriched genes were pri-
marily concentrated in the “Glycogen biosynthesis”
pathway, which is crucial for biofilm formation. This
process involves bacteria producing exopolysaccharides

FIGURE 4 Heterogeneity and covariations of single‐microbe metabolic functions in the human gut. (A) A brief introduction to
Microbe‐Metabolism (MIC‐Metabolism). (B) Computational workflow of MIC‐Metabolism. (C) The activated pathway number of the
dominant species from the three donors. (D) Heatmap showing the ranked‐based metabolic enrichment score (MES) of the gut microbe
species in metabolic‐related pathways. (E) The UMAP colored by the MES of pyruvate metabolism, the boxplot shows the comparison of
MES betweenM. funiformis and other microbe species. (F) The UMAP colored by the MES of propanoate metabolism, the boxplot shows the
comparison of MES between B. dorei and other microbe species. The boxplot shows the comparisons of MES of B. dorei (G) and M.

funiformis (H) in different donors. Correlation analysis of MES for the dominant species of ET‐P donor (I) and ET‐F donor (J), the
correlation between M. funiformis and P. timonensis (I), B. dorei and Enterocloster sp000431375 (J), the dots were colored by the function
category of the pathways. *p< 0.05, **p< 0.01, ***p< 0.001. ET‐B, Enterotype‐Bacteroides; ET‐F, Enterotype‐Firmicutes; ET‐P, Enterotype‐
Prevotella; smRNA‐seq, single‐microbe RNA sequencing; UMAP, uniform manifold approximation and projection.
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and transporting them to the extracellular environment
or cell envelope to promote biofilm development [37].
Our pseudotime and enrichment analysis together
revealed that the “Glycogen biosynthesis” process plays an
essential role in the functional cluster transformation of
M. funiformis, where undifferentiated cells transition into
multiple function cells and stressed cells (Figure 6H).
Interestingly, stressed cells exhibited significant hetero-
geneity in metabolic activity. Carbohydrate metabolism
cells were notably more active than stress response cells in
central carbon metabolism. Taken together, these results
offer new insights into microbe functional heterogeneity
within distinct gut microbial ecosystems at the single‐
microbe resolution.

M. funiformis improve mineral absorption
through exogenous phytic acid
degradation

Given the high expression of stress and myo‐inositol‐
related genes, and the activation of inositol phosphate
metabolism pathways in M. funiformis, we conducted a
series of experiments to explore its potential mecha-
nisms. We cultured M. funiformis under various condi-
tions: high concentrations of myo‐inositol, high concen-
trations of phytic acid (inositol hexakisphosphate, IP6),
and nutrient‐deficient environments. After selecting a
single colony from the Columbia Blood Agar (CBA) plate
(Figure S6A), firstly, we measured the growth of M.
funiformis under the multiple conditions, further quan-
tify the differences in metabolism at the molecular level.
Next, we measured the concentration of phytic acid in
phytic acid treatment group to explore phytic acid deg-
radation ability of M. funiformis. Finally, we aimed to

further explore the metabolic products of M. funiformis
in degradation phytic acid, in conjunction with previous
studies [38, 39], we assessed the SCFAs content in the
culture supernatant (Figure 7A).

The growth curve results showed that M. funiformis
grew faster in the presence of phytic acid and exhibited
higher expression levels of the gene iolD compared to
other groups. In contrast, the addition of myo‐inositol
had minimal effect on M. funiformis growth rate
(Figure 7B,C), suggesting that the elevated expression of
myo‐inositol related genes observed in our study may be
due to M. funiformis metabolizing phytic acid. Addi-
tionally, we observed significantly reduced bacterial
growth under nutrient‐deficient conditions, which was
accompanied by significant upregulation of stress‐related
genes (Figure 7C). Moreover, we also observed that the
significantly decrease of phytic acid concentration in the
culture supernatant of the stationary phase compared
with the logarithmic phase (Figure 7D). For a better
understanding of the phytic acid metabolism of M. fu-
niformis, we next evaluated the SCFA's concentration in
the culture supernatant. As expected, we found that in
the stationary phase of phytic acid group, acetic acid and
propionic acid levels, were significantly higher compared
with the logarithmic phase, while the level of butyric acid
has not shown great change, supporting that M. funi-
formis was able to degrade phytic acid into acetic and
propionic acids (Figure 7E). We also performed a phytic
acid metabolized strain (Escherichia coli K‐12 [40]) as
positive control to evaluate the phytic acid metabolism
performance of M. funiformis (Figure S6B,C).

To better understand the function of M. funiformis in
the gut microbiota, we subsequently studied in vivo.
After 1 week acclimatization, the 7‐week‐old C57BL/6J
mice were randomly assigned into three groups (control,

FIGURE 5 Single‐microbe RNA sequencing captures the diurnal dynamic activities of the human gut microbiome. (A) UMAP color by
species (left) and time point (right) of the three donors, the significance was determined by the analysis of similarities (ANOSIM).
(B) Heatmap showing the number of time‐point marker gene in the dominant species of the three donors, the bar plot (left) showed the
proportion of time‐specific marker genes among all genes of each donor, the bar plot (right) showed the proportion of time marker genes
among species marker genes. (C) Sankey plot showing the function of the time‐specific marker genes in the three donors. (D) Comparison of
MES on TCA cycle, glycolysis and pyruvate metabolism of different species in the three donors across three‐time points. (E) Correlation of
the dominant species from ET‐P donor across different metabolic pathways. The line color purple indicates a positive correlation, while
yellow indicates a negative correlation. The thickness of the lines represents the magnitude of the correlation coefficient, and the size of the
dots represents the MES of species. (F) UMAP plot showed three clusters (subpopulations) of P. copri from ET‐P donor under 0.5 resolution
of Seurat package; Dot plot showed the marker genes of each subpopulation; Boxplot showing the MES of specific pathways of each
subpopulation; Ballon plot showed the barcode number of each subpopulation and each time point. (G) UMAP plot showing five clusters
(sub‐populations) of B. dorei from ET‐B donor under 0.5 resolution of Seurat package; Dot plot showing the marker genes of each
subpopulation; Boxplot showed the MES of specific pathways of each subpopulation; Ballon plot showing the barcode number of each
subpopulation and each time point. *p< 0.05, **p< 0.01, ***p< 0.001. ET‐B, Enterotype‐Bacteroides; ET‐F, Enterotype‐Firmicutes; ET‐P,
Enterotype‐Prevotella; MES, metabolic enrichment score; TCA cycle, tricarboxylic acid cycle; TP1, Time point 1; TP2, Time Point 2;
TP3, Time point 3; UMAP, uniform manifold approximation and projection.
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phytic acid, phytic acid + M. funiformis) and were ga-
vaged daily for 2 weeks. Since previous studies reported
that the diets high in phytic acid could inhibit the min-
eral uptake and absorption in the gastrointestinal tract
[41], we collected the serum samples and evaluated
the mineral elements concentration. To investigate the
degradation of M. funiformis on phytic acid, we collected
serum and cecal samples to determine the phytic acid
and SCFAs content, respectively (Figure 7F).

The results showed that the minerals, especially
Calcium (Ca), Magnesium (Mg), and Zinc (Zn), were
significantly decreased in the phytic acid group, while

the serum mineral levels in the M. funiformis addition
group were significantly higher than those in the phytic
acid group, which was in line with previous studies
(Figure 7G) [38]. We found that the serum phytic acid
level was lower in the M. funiformis group compared
with phytic acid group, which demonstrated that the M.
funiformis could degrade phytic acid in vivo (Figure 7H).
Moreover, we found acetic acid and propionic acid levels
were significantly higher in M. funiformis group than
phytic acid and control group, however, the level of
butyric acid has not shown great change, the results were
in line with our in vitro findings (Figure 7I). Taken

(A) (B) (C)

(F) (G)

(D)
(E)

(H)

FIGURE 6 Functional trajectory analysis uncoveringM. funiformis's state transitions in distinct colon ecosystems. (A) UMAP clustering
identified seven clusters (sub‐populations) of M. funiformis from ET‐P and ET‐F donor under 0.5 resolution of Seurat package. Bar plot
showed the contributions of different donors (left) and time points (right) of different clusters. (B) Dot plot showed the marker genes of each
cluster. (C) Heatmap showing the MES of different pathways across each cluster. (D) Diagram of inositol phosphate metabolism. (E) UMAP
colored by MES of inositol phosphate metabolism, the boxplot showing the comparison of MES on inositol phosphate metabolism of each
cluster. (F) Pseudo‐time analysis of M. funiformis. (G) Differential expressed genes from pseudo‐time analysis. The heatmap shows the time
series of gene expression. The bar plot shows the numbers of differential genes per trajectories in the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways. (H) The underlying mechanism of cell fate transitions within distinct colon ecosystems. ET‐B, Enterotype‐
Bacteroides; ET‐F, Enterotype‐Firmicutes; ET‐P, Enterotype‐Prevotella; MES, metabolic enrichment score; TP1, Time point 1; TP2, Time
Point 2; TP3, Time point 3; UMAP, uniform manifold approximation and projection.
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FIGURE 7 (See caption on next page).
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together, these results strongly suggest that M. funiformis
could degrade phytic acid and produce acetic acid
and propionic acid, indicating that M. funiformis have
the potential to improve malnutrition resulting from
excessive intake of foods high in phytic acid (Figure 7J).

DISCUSSION

In this study, we applied a single‐microbe RNA sequenc-
ing method to dissect the functional redundancy and
microbial heterogeneity at single microbe resolution in the
human gut microbiome of three healthy donors repre-
senting enterotypes ET‐P, ET‐B, and ET‐F. We profiled
nine samples from the three different enterotype donors
at three time points intraday, and obtained functional
heterogeneity between individuals with the inter‐ or
intra‐species. In a previous study, we performed high‐
throughput single‐microbe RNA sequencing of the human
gut microbiome and was able to measure inter‐ and intra‐
species adaptive strategy heterogeneity [10]. Building on
this foundation, the current study focused on exploring
species‐specific functional heterogeneity and the dynamic
activity alterations in the gut microbe community function
among humans with different enterotypes.

It is well‐established that different species in the
human gut exhibit distinct functions [42]. Our results
demonstrate that single‐microbe RNA sequencing
effectively captures functional diversity based on single‐
microbe transcriptional characteristics. Given that sev-
eral species are present in different donors, we further
investigated whether the metabolic functions of the same
bacterial species vary among individuals. For example,
M. funiformis was more active in amino acid metabolism
in the ET‐P donor, whereas in the ET‐F donor, it was
more active in lipid metabolism (Figure 4D). This sug-
gests that the metabolic functions of the same bacterial
species can change under different host conditions, such
as diet or individual genetics [43]. Functional redun-
dancy is a common phenomenon in the human gut mi-
crobiome [44]. Through single‐microbe RNA sequencing,

we comprehensively dissected the functional redundancy
and complementarity patterns in the human gut micro-
biome. For example, in the ET‐P donor, both P. copri
(from the phylum Bacteroidetes) and M. funiformis (from
the phylum Firmicutes) exhibited high carbohydrate
metabolism activity (Figures 3A, 4D). The coexistence of
microorganisms with similar roles can benefit the host, as
other microbes can compensate for the loss of a beneficial
strain by providing the same function. Overall, the diver-
sity of microbial functions and functional redundancy
appear to be crucial for maintaining resilience [43].

In addition, using single‐microbe RNA sequencing
technology, we captured the diurnal dynamic activities of
the human microbiome at single‐microbe resolution for
the first time. Previous studies on the impact of long‐ or
short‐term dietary changes on gut microbiota have
primarily focused on the changes in the proportions of
different microbial species [39, 45]. The traditional me-
tagenomics only provides the relative abundance in the
sample. However, the behavior and biological effects of a
microbial community are determined not only by its
species composition and diversity but also by the cell
states that occur within each microbe. By analyzing fecal
samples at three different timepoints during the day, we
gained new insights into the dynamic patterns of the
human gut microbiome. For example, in the ET‐F donor,
the abundance of M. funiformis did not significantly
change across the three time points (Figure S7). How-
ever, at the single‐microbe level, the carbohydrate
metabolism activity of M. funiformis exhibited strong
dynamic alterations, which is likely a response to food
intake or host physiological shifts [46].

Furthermore, within the same species,M. funiformis (a
species characteristic of individuals of Asian ethnicity), we
identified various subpopulations displaying differential
gene expression related to metabolic, stress‐response, or
growth‐related pathways in the distinct colon ecosystems
of different donors. Notably, we discovered that the ino-
sitol phosphate catabolism pathway was significantly
activated in a sub‐population of M. funiformis, which
suggested was related with the degradation of phytic acid

FIGURE 7 M. funiformis improve mineral absorption through exogenous phytic acid degradation. (A) The experimental design of in
vitro M. funiformis phytic acid conversion. (B) The growth curve of M. funiformis at different culture conditions. (C) Bar plot showing the
expression level of iolE, iolD, dnaK and htpG ofM. funiformis in different conditions. (D) Line chart showing the phytic acid concentration in
phytic acid group at different growth phases. (E) Line chart showing the acetic acid, propionic acid and butyric acid concentration in phytic
acid group at different growth phases. (F) The experimental design of in vivo M. funiformis phytic acid conversion (n= 8). (G) Boxplot
showing the serum mineral elements concentration in the different treatment groups. (H) Bar plot showing the phytic acid concentration in
the different treatment groups. (I) Violin plot showing the acetic acid, propionic acid and butyric acid concentration in the different
treatment groups. (J) Overview of the effect of phytic acid on mineral absorption and degradation by M. funiformis in gut. NC, mice treated
with 0.85% NaCl; PA, mice treated with phytic acid; PA_MF, mice treated with phytic acid and M. funiformis. *p< 0.05, **p< 0.01,
***p< 0.001, NS, not significant. Ca, calcium; Cu, copper; Fe, iron; Mg, magnesium; Mn, manganese; SCFA, short‐chain fatty acids; Zn, zinc.

16 of 25 | SHEN ET AL.



(inositol hexakisphosphate, IP6). Phytic acid, a storage
form of phosphorus, is a key antinutrient factor in plant‐
based diets [47]. It has been reported that dietary phytic
acid intake is higher in Asian countries compared to
Western developed countries due to its accumulation in
cereal grains, nuts, and legume seeds which constitute a
greater part of the Asian diet [48]. In our study, we found
that phytic acid supplementation significantly enhances
the growth rate of M. funiformis, and the animal studies
suggesting that M. funiformis could function as a probiotic
by improving the bioavailability of calcium, magnesium,
and zinc in human gut. Compared to previous high‐
throughput methods for screening specific functional
species or strains [39, 49], our current approach offers
new insights into exploring species with key function
specializations.

The present study has some limitations. For the
sample collection, the sample size in this study is rela-
tively small, with only one individual per enterotype. In
future studies, we should collect samples before meals for
control and include a larger number of donors across
different enterotypes. For the experimental design, we
only choose a phytic acid metabolized bacteria as positive
control without a negative control, the mineral element
was only conducted on serum samples and the M. funi-
formis we used to couduct a series of experiments was
not directly isolated from the certain donor. Since the
diurnal dynamic of the human gut microbiome is influ-
enced by various factors (e.g., diet and endocrine), so we
performed analysis on the time‐specific species in vivo
without in vitro.

CONCLUSION

In summary, we systematically investigated the human
gut microbiome's species functional specialization
and redundancy, the diurnal dynamic activities and
the microbe state transition heterogeneous, at a higher
resolution than previous observations. We were able to
better resolve the microbe cellular state transitions
of the human gut microbiome based on single‐microbe
RNA sequencing in distinct colon ecosystems greatly
improving our understanding of the species‐function
heterogeneity among individuals. Furthermore, our
study demonstrated that the single‐microbe RNA
sequencing and analytic framework was an efficient
strategy to identify keystone species with specialized
metabolic function of biological and clinical importance
in the human gut microbiome. These new findings and
developed novel methods could potentially contribute to
precision microbiome diagnosis and treatment strategies,
thereby improving human health outcomes.

MATERIALS AND METHODS

Human fecal sample collection

Nine fecal samples were collected from three healthy
donors (male, age range 20–30) with distinct enterotypes
at three different time points: Time point 1 (TP1) (6–9
ante meridiem (a.m.), after breakfast), Time point 2
(TP2) (11 a.m.–1 post meridiem (p.m.), after lunch), and
Time point 3 (TP3) (6–9 p.m., after dinner). The dietary
of the donors was based on their regular daily eating
habits. The study protocol was approved by the Ethics
Committee of the First Affiliated Hospital, Zhejiang
University School of Medicine, China (2021IIT A0239),
and all participants provided written informed consent.
The samples were centrifuged twice at 4°C, 500 g for
3 min to remove impurities from digested food or host
cells. The samples were also performed a shotgun me-
tagenomic sequencing for identification and different
enterotypes were clustered at genus level. The purified
samples were then centrifuged at 4°C, 3900 g for 5 min to
collect bacteria, which were subsequently used for single‐
microbe RNA sequencing.

Single‐microbe RNA sequencing of the
human gut microbiome

Microbe fixation and permeabilization

To prevent degradation, human stool samples were
directly resuspended and dispersed in 4% para-
formaldehyde (100496, Sigma). The dispersed solu-
tions were gently inverted overnight at 4°C to ensure
complete fixation. The overnight‐fixed solutions were
centrifuged at 200 g for 5 min to precipitate impurities
in the stool samples. The supernatants were trans-
ferred and filtered through cell strainers (43‐50000‐98,
pluriSelect) to improve the isolation of impurities. The
filtered solutions were washed with ice‐cold phosphate
buffer saline (PBS)‐RNase Inhibitor (RI) (1× PBS
(10010072, Thermo Fisher) supplemented with
0.5 U/µL RI (N8080119, Thermo Fisher, United States)
and resuspended in 0.04% Tween‐20 (655206, Sigma)
in PBS. The microbes were mixed with a cell wall
digestion mix (R20115124, M20 Genomics) and incu-
bated at 37°C for 15 min. Immediately after the
digestion, the microbes were resuspended in ice‐cold
PBS‐RI to terminate the incubation. The microbes
were washed with ice‐cold PBS‐RI and resuspended in
ice‐cold 27.5 µL diethyl pyrocarbonate (DEPC) water
(693520, Sigma), containing approximately 5 million
bacteria for the following in situ reactions.
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In situ reverse transcription and deoxyadenine
(dA) tailing

In situ reactions were performed with VITApilote‐
PFT1200 kit (R20114124, M20 Genomics). The microbes
were mixed with 10 microliter (µL) 5× reverse
transcription buffer, 5 µL 10 micromolar (µM) random
primer, 2.5 µL 100mM deoxynucleoside triphosphates
(dNTPs), 2.5 µL RNase inhibitor, and 2.5 µL reverse
transcriptase (50 U/µL). The reaction mixtures were
incubated in a thermal cycler for 10 cycles of annealing,
with the temperature gradually increasing from 8°C to
42°C, and then finishing with a 30‐min incubation. After
reverse transcription, the microbes were washed with
ice‐cold PBS‐(Tween‐20) T (0.05% Tween‐20 in 1× PBS).
The washings were repeated for three times, and the
microbes were subsequently resuspended in 39 µL DEPC
water. The microbes were mixed with 5 µL 2.5 millimolar
millimolar (mM) CoCl₂, 5 µL 10× Terminal deox-
ynucleotidyl transferase (TdT) buffer, 0.5 µL 100mM
deoxyadenosine triphosphate (dATP), and 0.5 µL TdT
enzyme. The microbes were incubated at 37°C for 30min
to perform in situ dA tailing. After dA tailing, the
microbes were washed with ice‐cold PBS‐T. The wash-
ings were repeated for two times and the microbes were
subsequently resuspended in 200 µL PBS‐T.

Single‐microbe droplet encapsulation

Single‐microbe droplets were prepared following our
previous developed protocols [10], and utilizing the
VITApilote‐PFT1200 kit. Briefly, the microbes were
counted and adjusted to an optimal cell density using
a density gradient solution. The microbes, 2× DNA ex-
tension reaction mix, and barcoded hydrogel beads
(Table S4) were loaded into the corresponding inlets in
the microfluidic chip. The single‐microbe droplets were
subsequently generated by the microfluidic platform
VITAcruizer DP400. After encapsulation, the droplets
were incubated at 37°C for 1 h, 50°C for 30 min, 60°C for
30 min, and 75°C for 20min.

cDNA enrichment

The droplets were mixed with Perfluorooctanol (370533,
Sigma) buffer to isolate the aqueous phase of the sample
from the oil phase. The aqueous phase mixtures were
purified with DNA cleanup magnetic beads (A63882,
Beckman). After purification, quantitative polymerase
chain reaction (qPCR) was conducted to identify the
optimal cycle numbers for complementary DNA (cDNA)

enrichment. This process pinpointed the early ex-
ponential amplification phase corresponding to these
cycles. PCR amplifications were performed with the
primer sets described in Table S5. The PCR products
were purified with magnetic beads and quantified using
Qubit 3.0 (Q33216, Thermo Fisher) and qualified with
the DNA Fragment Analyzer (Qsep100, Bioptic).

Library preparation and sequencing

The DNA Library Prep Kit for Illumina V3 (ND607‐03/
04, Vazyme) was utilized for library construction.
Qualified cDNAs were mixed with end‐repair enzymes,
end‐repair buffer, and nuclease‐free water to perform
end‐repair and adenylation. The reaction mixtures were
incubated at 30°C for 30min and then heat‐inactivated at
65°C for 30min. The heat‐inactivated mixtures were
mixed with working adaptors and ligation enzymes and
incubated at 20°C for 15 min. After incubation, DNA
purifications and selections were performed with mag-
netic beads. The libraries were amplified via PCR and
purified with magnetic beads. The purified cDNA
libraries were subsequently quantified and qualified
before sequencing on the NovaSeq. 6000 platform with
the S4 Reagent Kit, generating paired‐end reads of 150
base pairs (bp).

Human gut single‐microbe RNA
sequencing data analysis

Data quality control, taxonomic annotation and
gene expression level quantification

We first filtered the low‐quality barcodes and annotated
the species of each barcode by our previously developed
taxonomic annotation pipeline Microbe‐Annotation
(MIC‐Anno) [10]. To examine functional heterogeneity
within species, we focused on abundant bacterial species,
defined as those represented by more than 100 total
barcodes. We began by trimming primer sequences and
additional bases generated during the dA‐tailing step
from the raw paired‐end sequencing data. From the
paired‐end reads, we extracted the 8 bp unique molecular
identifier (UMI) and 20 bp cell‐specific barcode from the
R1 end sequencing file and merged them, accepting
barcodes with a Hamming distance of 2 bp or less.
The R2 end file was used to generate the bacterial gene
expression matrix using STAR (v2.7.10a) [50], feature-
Counts (v2.0.3) [51] and umi_tools (v1.1.2) [52] with
appropriate parameters and the whole UHGG (v2.0.1)
[21] gut microbiome genome as the reference. Only
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uniquely mapped reads were retained to count UMIs for
each barcode.

Dimensionality reduction clustering and
functional marker gene identification

The single‐microbe gene expression matrix was imported
into Seurat (version 4.1.3) [53] for the downstream
analysis. Microbes with nCount_RNA> 30 and nFea-
ture_RNA> 15 were retained for further study. We
define species with more than 100 barcodes as the “core
species.” Dimensionality reduction was performed using
principal component analysis (PCA) and clustering
was performed using uniform manifold approximation
and projection (UMAP). Clusters were identified with
the “FindClusters” function (resolution = 0.5) in Seurat.
For the clustering analysis in single microbe species,
microbes from the species “P. copri” and “B. dorei” in the
ET‐B donor, and “M. funiformis” in the ET‐P and ET‐F
donors were extracted and subclusters were identified
using the “FindClusters” function (resolution = 0.5).
Marker genes were determined with the “FindAllMar-
kers” function (adjusted p‐value < 0.05) in Seurat, using
the two‐sided Wilcoxon rank‐sum test with Bonferroni
correction to identify unique transcriptional differences
among microbes. Analysis of similarities (ANOSIM) was
used to determine whether there are statistically signifi-
cant differences between different time points in each
species.

MIC‐Metabolism

MIC‐Metabolism was developed to quantify single‐
microbe metabolic activity using single‐microbe RNA
sequencing data. Its primary function is to assess meta-
bolic pathway gene set activity in individual microbes
across different species. To annotate gene functions in
gut microbiome species, we used UHGG (v2.0.1) [21] to
obtain KEGG orthology (KO) and queried KEGG path-
ways using the KEGGREST package (v1.38.0) to compile
a list of metabolic gene sets.

The quantification method in MIC‐Metabolism cal-
culates the ranked‐based MES for each species through
the following three steps: (1) Raw MES generation: In
this study, we used a ranked‐based method ssGSEA [54]
to calculate the metabolic gene set enrichment score of
each microbe. MIC‐Metabolism also supports different
methods: ssGSEA, AUCell [55], VISION [56], and GSVA
[57], of which ssGSEA is the default method. The input
data is an expression matrix, in which the values are
gene‐summarized counts. (2) Permutation‐based activity

inference: We performed a permutation analysis on
genes within each specific pathway 1000 times, resulting
in 1000 random enrichment scores. The calculated raw
MES in Step 1 was then compared against the random
score sets. For example, if it ranked within the top 10,
corresponding to a pathway p‐value < 0.01, the pathway
was considered “significantly activated” in the species.
(3) MES normalization: The normalization method is
based on the permutation analysis results, where the
x‐axis is the ranking of raw MES, and the y‐axis is the
MES of specific pathway; we used the function “scale” in
R to get the z‐score as the final normalized MES, if the
MES is greater than 0, the pathway was considered as
“activated,” while if the MES is lower than 0, the path-
way was defined as “inactive.” MES correlation analysis
was used to investigate pathway activity co‐occurrence
patterns between species based on Spearman correlation
analysis.

Pseudotime and gene enrichment analysis

After the clustering analysis, the microbe species
“M. funiformis” from ET‐P and ET‐F donors was
extracted for pseudotime analysis. We used the Monocle 2
package (version 2.26.0) [58] to explore the microbe
cellular state transitions in distinct colon ecosystem.
Differential expressed gene analysis was conducted with
the “differentialGeneTest” function, considering genes
with a q‐value < 0.01 as differentially expressed genes
(DEGs). These DEGs were sorted and imported into
the cell data set using the “setOrderingFilter” function.
The pseudotime trajectory was constructed with the
“DDRTree” algorithm using default parameters and
visualized with the “plot_cell_trajectory” function. The
dynamic expression changes of the DEGs were visualized
using the “plot_pseudotime_heatmap” function. KEGG
enrichment analysis was performed using the “enricher”
function of the clusterProfiler package (version 4.6.0). All
analyses were conducted in R (version 4.2.2).

Growth rate measurement of M.
funiformis in multiple conditions

The bacteria used for the growth curve experiment was
Megamonas funiformis DSM 19343 (M. funiformis)
bought from the German Collection of Microorganisms
and Cell Cluture (DSMZ). The M. funiformis DSM 19343
is an anaerobe, gram‐negative, rod‐shaped bacterium
that was isolated from human faeces in Japan [59].
M. funiformis was first cultured overnight on CBA
solid culture medium at 37°C, in an anaerobic bag
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(Figure S6A). A single colony was then selected from the
CBA plate and inoculated into Chopped Meat Carbohy-
drate Broth (CMC) liquid culture medium (KDM150,
MingZhouBio) at 37°C in an anaerobic bag without
shaking for further experiments. When the liquid culture
M. funiformis reaching OD600 ~ 0.6, equal volumes
(100 µL) of bacterial suspension were inoculated into
different culture conditions (including those supple-
mented with 50 μg/mL myo‐inositol (Myo‐Inositol
group), 50 μg/mL phytic acid (Phytic acid group), and
70% nutrient‐deficient medium (Starvation group), and
no treatment was applied except for the addition of
M. funiformis (Control group), all the volume was
10mL). For each group, five replicate were set. Optical
density (OD) at 600 nm was measured every 2 h after
inoculation to construct bacterial growth curves. We then
collected the culture supernatant of phytic acid group at
0 h, 6 h, and 12 h for phytic acid measurement and the
culture supernatant of control and phytic acid group at
0 h, 6 h, and 12 h for SCFAs measurement.

A phytic acid metabolized strain
(Escherichia coli K‐12) as positive control

E. coli K‐12 (ATCC 25404) was first cultured overnight on
Luria‐Bertani Broth (LB) solid culture medium at 37°C.
A single colony was then selected from the LB plate and
inoculated into LB liquid culture medium (KDM159,
MingZhouBio) at 37°C without shaking for further ex-
periments. When the liquid culture E. coli K‐12 reaching
OD600 ~ 0.6, equal volumes (100 µL) of bacterial suspen-
sion were inoculated into culture conditions with
50 μg/mL phytic acid (Phytic acid group) and no treat-
ment was applied except for the addition of E. coli
(Control group), all the volume was 10mL. We then
collected the culture supernatant of phytic acid group at
0 h, 6 h, and 12 h for phytic acid measurement and the
culture supernatant of control and phytic acid group at
0 h, 6 h, and 12 h for SCFAs measurement.

Real‐time qPCR analysis

Total RNA was extracted from M. funiformis at different
culture conditions by FreeZol Reagent (R711‐01, Va-
zyme). cDNA was synthesized using the HiScript IV RT
SuperMix for qPCR (+gDNA wiper) (R423‐01, Vazyme).
Quantitative real‐time PCR (RT‐qPCR) was performed on
the CFX96 system (Applied Biosystems) using ChamQ
Universal SYBR qPCR master mix (Q711‐02, Vazyme).
Gene expression levels were normalized to those of 16s
ribosomal RNA (rRNA). Primers used in this study are

shown in Table S6. The gene expression levels among
and between groups were statistically evaluated using
Analysis of Variance (ANOVA).

Animal studies

Six‐week‐old male C57BL/6J mice were purchased from
the First Affiliated Hospital, Zhejiang University School
of Medicine, and were randomly divided into four mice
per cage, with free access to food and water under a strict
12 h light cycle. Acclimatization time was 1 week. Mice
were fed AIN‐93G diet (purchased from Shuangshi ex-
perimental animal feed), and randomly assigned into
three groups (each group with 8 mice). To test the in vivo
degradation of phytic acid by M. funiformis, mice were
gavaged with 0.2 mL 0.2mg g−1 body weight of phytic
acid (phytic acid group), or 0.2 mL 0.85% NaCl (Control
group), or 0.2 mL 0.2 mg g−1 body weight of phytic acid
and 1*109 colony‐forming units (c.f.u.s) of M. funiformis
(phytic acid +M. funiformis group) every day for
2 weeks. Bacterial suspension was prepared in 0.85%
NaCl. In Week 3, mice were fasted for 12 h before collect
blood and colon contents. Blood samples were placed in
plastic tubes for at least 3 h and then centrifuged at
4000 rpm for 10 min at 4°C. The serum was then col-
lected to be used for mineral content determination and
phytic acid concentration determination. After blood
sampling, the cecal samples were taken and used for
SCFAs evaluation. The study was reviewed and approved
by the Animal Experimentation Ethics Committee of the
First Affiliated Hospital College of Medicine, Zhejiang
University, with approval number 20241356. All methods
involving animals were carried out in accordance with
the ARRIVE (Animal Research: Reporting of In Vivo
Experiments) guidelines.

Measurement of minerals

The levels of copper (Cu), iron (Fe), zinc (Zn), manga-
nese (Mn), magnesium (Mg), and calcium (Ca) in mouse
serum were evaluated using an inductively coupled
plasma mass spectrometry (ICP‐MS NexION 1000G,
PerkinElmer) according to previous study [60]. Add
100 μL serum into a Polytetrafluoroethylene (PTFE)
digestion vessel and add 0.5 mL 68% HNO3, and add re-
agents to another PTFE digestion vessel as blank control,
then cover the digestion vessel tightly after bubbles have
completely disappeared. Place the digestion vessel in a
microwave digestion system and start digestion accord-
ing to the digestion protocol. Once cooled, transfer the
digested solution to a 10mL volumetric flask and dilute
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to 5 mL using ddH2O. After filtering the diluted sample
through a 0.22 μm membrane, using ICP‐MS for detec-
tion. The elements concentration in the serum could be
calculated as following formula:

C V

V
Element concentration (μg/mL) =

×
,final

sample

C: the concentration of solution detected by ICP‐MS; Vfinal:
diluted volume, in this method is 5mL; Vsample: sample
volume used in the detection, in this method is 100 μL.

Measurement of phytic acid

The level of phytic acid in serum or culture supernatant
was determined using phytic acid content assay kit
(BC5845, Solarbio,) according to the manufacturer's
instructions. Step1: Add 100 μL serum or culture super-
natant into 1mL extraction solution I, and shake at 25°C
for 2 h. Then centrifuge at 10,000 g for 10min at 4°C, and
collect 0.8mL of the supernatant. Step 2: Slowly add
0.15mL extraction solution II, gently mix, after centrifu-
gation at 10,000 g for 10min at 4°C, collect 120 μL super-
natant. Step 3: Add 50 μL reagent II, incubating in water
bath at 37°C for 30min, then add 50 μL working solution
and stand at 25°C for 10min, measure at OD700 (Ameasure).
Taken 120 μL supernatant from Step 2, add 50 μL reagent I
instead, and follow the same procedure as step 3, measure
at OD700 (Acontrol). Taken 120 μL 250 nmol/mL standard
phytic acid solution and follow the same procedure as step
3, measure at OD700 (Astandard). Taken 120 μL reagent I and
follow the same procedure as step 3, measure at OD700

(Ablank). Each serum sample requires a corresponding
control tube. The concentration of phytic acid in the serum
or culture supernatant could be calculated as the following
formulas:

A A AΔ = − ,measure measure control

A A AΔ = − ,standard standard blank

∆

∆

A C V

V V V

A V V

Phytic acid (nmol/mL)

=

× × (

+ ) × ( + )

× ×
,

measure standard supernatant

solution II solution I total

standard total supernatant

Cstandard: the concentration of standard phytic acid, in
this kit is 250 nmol/mL; Vsupernatant: the volume of
supernatant added in step 2, in this method is 120 μL;
Vsolution II: the volume of extraction solution II in step 2,

in this method is 0.15 mL; Vsolution I: the volume of ex-
traction solution I in step 1, in this method is 1 mL; Vtotal:
the volume of total liquid after adding working solution,
in this method is 0.1 mL. The Mann–Whitney U test was
used to compare continuous variables.

Measurement of SCFAs

The SCFAs concentration in cecal samples or culture
supernatant was measured using the gas chromatography‐
mass spectrometry (GC‐MS 7890A‐5975C, Agilent). For
the cecal samples, the following steps were applied: 1. Add
1mL pure water in 25mg cecal sample and vortex 10 s; 2.
Add steel beads and process with a 40 Hz grinder for
4min, followed by ultrasonic treatment in an ice water
bath for 5min (repeat three times); 3. Centrifuge the
sample at 4°C 5000 rpm for 20min; 4. Transfer 0.8mL
supernatant into a new 2mL Eppendorf (EP) tube; 5.
Add 0.1mL 50% H2SO4 and 0.8mL internal standard
solution (200 μg/mL 2‐Ethybutyric acid, using methyltert‐
butylether (MTBE) as the solvent) (214353, Fisher), vortex
for 10 s, oscillate for 10min, and sonicate for 10min in an
ice water bath; 6. Centrifuge at 4°C 10,000 rpm for 15min,
stand at −20°C for 30min and remove 100 μL supernatant
for GC‐MS analysis. For the culture supernatant samples,
the following steps were applied: 1. Add 0.05mL 50%
H2SO4 and 0.2mL internal standard solution in 100 μL
sample, vortex for 30 s, oscillate for 10min, and sonicate
for 10min in an ice water bath; 2. Centrifuge the sample at
4°C 10,000 rpm for 15min; 3. Stand at −20°C for 30min
and remove 100 μL supernatant for GC‐MS analysis.

Statistic methods

The two‐sided Wilcoxon rank‐sum test with Bonferroni
correction was used to identify unique transcriptional
differences among microbes. ANOSIM was used to
determine whether there are statistically significant dif-
ferences between different time points in each species.
The gene expression levels among and between groups
were statistically evaluated using ANOVA. MES corre-
lation analysis was used to investigate pathway activity
co‐occurrence patterns between species based on Spear-
man correlation analysis.
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