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Systematic identification of cell-fate regulatory
programs using a single-cell atlas of mouse

development
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Waddington's epigenetic landscape is a metaphor frequently used to illustrate cell differentiation. Recent advances in
single-cell genomics are altering our understanding of the Waddington landscape, yet the molecular mechanisms of cell-fate
decisions remain poorly understood. We constructed a cell landscape of mouse lineage differentiation during development at
the single-cell level and described both lineage-common and lineage-specific regulatory programs during cell-type matura-
tion. We also found lineage-common regulatory programs that are broadly active during the development of invertebrates and
vertebrates. In particular, we identified Xbp1 as an evolutionarily conserved regulator of cell-fate determinations across dif-
ferent species. We demonstrated that Xbp1 transcriptional regulation is important for the stabilization of the gene-regulatory
networks for a wide range of mouse cell types. Our results offer genetic and molecular insights into cellular gene-regulatory
programs and will serve as a basis for further advancing the understanding of cell-fate decisions.

lar organisms suggests a dedicated regulatory program that

governs the trajectories of cell-fate decisions'~’. According
to Waddington’s epigenetic landscape theory, differentiated cell
types arise from an unstable stem/progenitor state and eventu-
ally fall into stable cell-fate attractors®. The emerging concept
of the state manifold derived from single-cell data has further
enhanced our understanding of lineage progression®. State mani-
folds, as a more general and data-driven representation of a
Waddington landscape, reflect the high-dimensional nature of
cell-fate decisions and provide high-resolution descriptions of
dynamic cell trajectories®. What are the gene-regulatory pro-
grams underlying these state manifolds? How are they regulated?
These are two central questions that are puzzling those working in
the field.

Transcription factors (TFs) and gene-regulatory networks
(GRNs) are known to govern cell-fate decisions’. For example,
the GATA1/PU.I system makes the binary choice between the
erythroid/megakaryocyte and myeloid lineages in the process of
hematopoietic differentiation® and the MyoD system has critical
roles in myogenic cell-lineage specification during development
and trans-differentiation’. Oct4-Cdx2 makes the decisions between
inner cell mass and trophectoderm cells during embryogenesis'’.
These studies demonstrate the importance of lineage-specific tran-
scriptional regulations in different cellular systems. However, these
focused analyses of a cell type’s regulatory network modules cannot
offer a global view of the complex GRNs operating during organism
development.

| he robustness of the developmental process for multicellu-

With breakthroughs in single-cell RNA-sequencing (scRNA-
seq), single-cell atlases of various developmental stages have
been profiled at the organism level''~'°. Single-cell datasets offer
unprecedented opportunities to systematically unravel the nature
of cell-fate regulatory programs'”'®. A systematic and global view
of multi-lineage, multi-species, cell-fate gene-regulatory modules
may help us to understand cellular lineage specification and mat-
uration. In the present study, we determined the molecular con-
tent of lineage-common and lineage-specific regulatory programs
through multi-lineage and cross-species analysis. We constructed
a time-series mouse cell differentiation atlas (MCDA) to reveal the
GRNs that govern cell-fate decisions (Fig. 1a). We characterized a
general feature of decreased entropy with less complexity in most
lineages along with development. Through cross-species analysis,
we identified conserved features of cellular differentiation, one of
which was that ribosomal genes are universally expressed at high
levels in stem/progenitor cells. Importantly, we experimentally veri-
fied XbpI as a lineage-common master regulator that was involved
in core fate-determining circuits in mice.

Results

Construction of MCDA. We performed single-cell transcriptomic
analysis on mice at seven life stages ranging from the early embry-
onic stage to the mature adult stage: embryonic day (E) 10.5, E12.5,
E14.5, postnatal day (P) 0, P10, P21 and adult. Altogether, we profiled
more than 520,000 single cells (Fig. 1b and Supplementary Tables
1-3). The profiled organs, including the brain, heart, intestine, kid-
neys, liver, lungs, pancreas, stomach, testes and uterus, spanned
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Fig. 1] Single-cell transcriptional atlas of mouse differentiation. a, Overview of the experimental and bioinformatics analysis workflow. b, A total of
ten organs were analyzed at seven different timepoints. The barplot shows the number of sequenced cells per organ per stage prepared by Microwell-seq.
¢, The t-SNE visualization of 520,801 single cells from the MCDA, colored by cluster identity. The gray dashed lines mark the cell types and lineages.

d, The t-SNE visualization of 520,801 single cells from different developmental stages of mice, colored by stages. Parts b and d share the same color
legend of stages.

diverse systems. Previously published E14.5 and adult data'"'*repre-  distinct cell populations (Fig. 1c and Supplementary Table 4).
sented approximately 30% of the cells in the entire dataset. Systemic ~ Clusters that were composed of multiple tissues included immune
mouse single-cell atlases of PO, P10 and P21 have not been depicted  cells (C9, C16, C18 C25, C29, C34), stromal cells (C13, C20, C22,
thus far. We projected all single cells on a t-distributed stochastic ~ C26, C28), muscle cells (C31) and endothelial cells (C8), whereas
neighbor embedding (¢-SNE) plot and obtained 95 transcriptionally  epithelial cells differed across tissues and formed separate clusters
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(C19, C27, C39) (Extended Data Fig. la—c and Supplementary
Table 5). Moreover, the clusters were arranged in chronological
order, showing projections from fetal progenitors toward adult
mature cell types (Fig. 1d). Analysis of differentially expressed genes
(DEGs) in neighboring stages for each tissue showed that the criti-
cal period of tissue maturity varied across different stages. The tran-
sition from E14.5 to PO led to dramatic changes during development
(Extended Data Fig. 1d). Changes from PO to P10 were dominated
by energy metabolism on account of the different energy sources”,
whereas changes from P10 to adulthood focused on pathways of
response, transport and metabolism (Extended Data Fig. le and
Supplementary Table 6). We observed lots of distinct clusters from
the PO and P10 samples, indicating continuing cellular transitions
after birth. We have provided an interactive website, http://bis.zju.
edu.cn/MCA, to enable public access to this systematic single-cell
atlas of mouse lineage differentiation from embryogenesis through
to mature adult.

Cellular changes during mouse development. The tissue effect
gave rise to 31.9% of the global variance, which is much more than
variance from the stage and sex effects (Extended Data Fig. 1f,g). We
studied dynamic changes in the kidneys as a representative. After
analyzing kidney samples from the E10.5 to adult stages, we defined
30 clusters with canonical markers***' which included stromal cells,
nephron epithelial cells, fenestrated endothelial cells and immune
cells (Fig. 2a, Extended Data Fig. 1h and Supplementary Table 7).
Cells from diverse developmental stages of nephrogenesis were well
captured in our single-cell data, with ureteric bud (UB) cells (Ret*,
Gata3"), nephron progenitor cells (NPCs, Cited1*, Gdnf*, Six2*),
proximal S-shaped body (SSB) cells (LspI*, Trmem100*), distal SSB
cells (LhxI*), podocytes (Podos, Podxl*), five types of proximal
tubule (PT) cells, ascending and descending loop of Henle cells
(ALOH and DLOH), connecting nephron tubule (CNT) cells, distal
collecting tubule (DCT) cells, two subsets of intercalated cells (ICs)
and principal cells (PCs). Notably, UB cells and NPCs included cells
at the PO stage, whereas distal and proximal SSB cells included cells
at the P10 stage (Fig. 2b). This result indicated that nephrogenesis
continued postnatally instead of being completed before birth in
the mice. Moreover, the maturation of renal function continued
until the adult stage with gradual physiological changes (Extended
Data Fig. 1i).

To reveal cellular heterogeneity in mouse tissues during the
development, we performed ¢-SNE and differential gene expression
analysis for each tissue at different stages (Extended Data Figs. 2
and 3 and Supplementary Table 8). We then uncovered 37 previ-
ously unrecognized cell populations with interesting gene expres-
sion patterns with regard to mouse development (Supplementary
Table 9). For example, several cell types were found co-expressing
markers of two cell types. We identified cells that co-expressed
makers of myocytes (Myl9, Acta2) and endothelial cells (Esam,
Gngl1) in both intestine and brain at the PO stage (Fig. 2c,d). The
co-immunofluorescence of Myl9 and Esam further confirmed the
scRNA-seq results (Fig. 2e,f). These myoendothelial cell types
may be endowed with multi-lineage potential similar to human
myoendothelial cells”. In the P10 lung, we verified a special club
cell type (Scgblal, Scgb3al) expressing goblet cell markers (Tff2,

Muc5b), which may be an intermediate cell type during airway epi-
thelial differentiation (Extended Data Fig. 4a,b). In addition, some
tissue-specific markers showed ectopic expression in other tissues.
For example, we discovered hepatocyte-like cells (Afp, Alb) in the
pancreas at both the PO and the P10 stages, and immunofluores-
cence assays confirmed their existence (Extended Data Fig. 4c,d).
They displayed different expression patterns from liver hepatocytes
and showed high expression of early hepatic stem or progenitor
marker Hnf4a*** (Extended Data Fig. 4e,f). Together, progenitor
pools with co-expression or ectopic expression patterns may widely
present in developing organs, suggesting the complexity of the
mammalian state manifolds before terminal differentiation.

Characterization of regulatory programs in MCDA. High-
resolution MCDA offers a powerful resource for studying the
molecular basis of cell-fate decisions through various lineages. To
reveal organism-wide characteristics, we applied different potency
models based on entropy to qualify the state manifold landscape®~*°.
Entropy decreased continuously along with organ maturation in the
most assayed lineages using different computational methods (Fig.
3a,b and Extended Data Fig. 5a-d), revealing a decrease in tran-
scriptional plasticity and an increase in transcriptional stability.
Based on the principles of these methods, we inferred that cell-type
maturation appears to be an event associated with more singular
transcriptomes and biological processes.

Cell types represent high-dimensional attractor states of GRNs™.
TFs function as important regulators in GRNs to specify cell
types and differentiation patterns’’. To identify critical TFs of cell
identity, we took the advantages of both data-driven (SCENIC)*
and database-derived (VIPER-DOROTHEA)* methods to esti-
mate the activities of TFs. We achieved >75% sensitivity to detect
tissue-specific TFs based on single-cell datasets (Extended Data Fig.
5e). Over 900 TFs were identified with confidence levels ranging
from A (high confidence) to C (low confidence) (Supplementary
Table 10). Aggregated heatmaps were constructed to display the
specific and common relationships of the TFs and their enriched
lineages during development (Fig. 3c and Extended Data Fig. 5f).
The neural lineage was characterized by DixI, Pou3f3 and Sox10.
The Cebpa and interferon regulatory transcription factor genes
marked the immune lineage, whereas the endothelial lineage exhib-
ited prominent Sox17 and Sox18 expression. Strikingly, hierarchi-
cal clustering analysis showed two modules of lineage-sharing TFs,
which were enriched in adult tissues and fetal tissues, respectively
(Fig. 3c and Extended Data Fig. 5g). Enrichment and occupancy
of Hox and zinc-finger families in fetal tissues have previously
been associated with embryonic development**. The ubiquitous
expression cluster in adult tissues was shared for a wide range of
lineages, with extensive representation of Xbp1, genes of the activa-
tor protein-1 (AP-1) family and other molecules. Only 78 out of 268
TFs in this adult multi-lineage cluster were housekeeping genes™
(Extended Data Fig. 5h). Jun and Fos gene families can dimerize
and form AP-1, which has been reported to act as a regulator in
the differentiation of various cell types*. In addition, AP-1 fam-
ily members have been recently suggested to act as central regu-
lators of somatic cell fate®*. These highlighted the important
roles of AP-1 family members in cell-type differentiation and

>»
>

Fig. 2 | Cellular heterogeneity in mouse tissues. a, UMAP visualization of 57,118 single cells in the kidneys at 7 different timepoints, colored by cluster
identity. b, Dot-plot visualization of expression levels of representative markers in each cell type in the kidney single-cell data. The size of the dot encodes
the percentage of cells within the cell type and the color encodes the average expression level. Heatmap showing the cell number of corresponding cell
types at each timepoint. ¢,d, Feature plots in the t-SNE map of PO intestine (¢, n=9,265 cells) and PO brain (d, n=9,101 cells). Cells are colored according
to the expression of the indicated marker genes or two genes. The red boxes magnify the co-expressed cell types in the tissues. e f, Immunofluorescence
assay for the cells that co-expressed makers of myocytes (Myl9) and endothelial cells (Esam) in both intestine (e) and brain (f) at the PO stage. The blue
marks the cell nucleus using DAPI. The red boxes indicate the co-expressed locations. The experiment was replicated three times with similar results.

Scale bar, 20 pm.
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Fig. 3 | Analysis of regulatory programs in MCDA. a, Entropy measurement of
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MCDA using the CCAT method in different development stages

(n=520,801 cells). P values are from a two-sided Wilcoxon's rank-sum test comparing entropies of two different development stages. NS, not significant;
P>0.05, P<0.05, "P<0.01, "P<0.001, "P <0.0001. The exact P values have been displayed in the Source data. Boxplots: center line, median; boxes,
first and third quartiles of the distribution; whiskers, highest and lowest data points within 1.5 X interquartile ratio (IQR). The same statistical analysis was
performed for a and b. b, Entropy measurement of each lineage in MCDA using the CCAT method in different developmental stages (epithelial: n=116,436
cells; neuron: n=41,342 cells; immune: n=75,433 cells; muscle n=17,909 cells; stromal: n=106,955 cells; endothelial: n=23,243 cells; other: n=30,575
cells; erythroid: n=41,683 cells; proliferating: n=16,567 cells; secretory: n=15,161 cells; germline: n=35,497 cells). ¢, Heatmap of aggregated module
activities of TFs clustered by fuzzy c-means showing variations by stage and lineage from SCENIC. The representative TFs of each lineage in the MCDA are
listed. The blue marks the TFs in collection A (high confidence) and the green marks the TFs in collection B (medium confidence).

cell-identity maintenance. Moreover, these TFs exhibited increas-
ingly upregulated gene expression levels during lineage maturation
(Extended Data Fig. 5i), which coincided with decreased entropy
in most lineages (Fig. 3a,b and Extended Data Fig. 5a-d). Taken
together, these results suggest that these lineage-common TFs func-
tion as vital regulators during maturation across a range of mouse

cell types.

Global features during cell-fate decisions across species. Given
that the suite of regulatory genes that control development is
ancient*, we wondered whether GRNs are conserved in inverte-
brates and vertebrates. We decided to investigate the lineage-specific
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and lineage-common regulatory elements during evolution. First,
we performed a comparative analysis of gene regulation during
development in seven species with varying evolutionary distances
at single-cell resolution. Development atlases of four invertebrates
and three vertebrates were collected, including Schmidtea medi-
terranea®, Caenorhabditis elegan®, Ciona intestinalis'®, Hydra vul-
garis®, Danio rerio”, Mus musculus'' and Homo sapiens'. More
than 1,100,000 cells were categorized into 665 cell-type pairs for
relatively differentiated states and undifferentiated states (Extended
Data Fig. 6a and Supplementary Table 11). Partition-based graph
abstraction (PAGA)* was applied to map cell types along the devel-
opmental branch for invertebrates (Extended Data Fig. 6b-d). For
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and Myc in different stages and lineages in MCDA. i, Gene enrichment analysis of the driving genes in the CCAT method. The top 30 enriched biological
processes were displayed. Red marks the GO terms related to the ribosome biogenesis. ER, endoplasmic reticulum; memb, membrane.
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vertebrates, to minimize the impact of tissue effects, we connected
cell states of the same tissue across time based on gene expression
similarity*, and cell hierarchies of the human lung were shown as
an example (Extended Data Fig. 6e).

To explore the common changes in cross-species development,
we performed entropy analysis and found that entropy decreased
in all seven species along with development, which suggested that
the increase in transcriptional stability was evolutionarily con-
served (Fig. 4a-f and Extended Data Fig. 7a,b). For the molecu-
lar changes, we performed differential gene expression analysis
between corresponding cell-type pairs and mapped homologous
genes to the human gene symbols to find commonly regulated genes
in multiple species (Extended Data Fig. 7c,d and Supplementary
Tables 12 and 13). For all species, the numbers of conserved down-
regulated genes were greater than those of conserved upregulated
genes, which suggests that stem/progenitors have more convergent
expression patterns than differentiated cell types* (Extended Data
Fig. 7e). Both commonly downregulated and upregulated genes in
at least three species tended to have more protein—protein interac-
tions (PPIs) than other conserved and not conserved genes in at
least three species, which indicated that the common regulators
were evolutionarily older* (Extended Data Fig. 7f,g). The genes
downregulated during development were enriched with ribosomal
protein genes, mitochondrial ribosomal protein genes and small
nuclear ribonucleoprotein genes (Fig. 4g, Extended Data Fig. 7h
and Supplementary Table 14). Notably, Myc and Mycn, as regula-
tors of ribosome biogenesis**, showed high activity scores in the
early stages of mouse development (Fig. 4h). They were classified in
the common (fetal) module (Supplementary Table 10). These find-
ings were highly consistent with recent studies, which reported that
ribosomal protein genes as central network hubs are robust markers
of differentiation potency”*. In our cross-species entropy analysis,
the conserved driving genes (Methods) in cells with high differ-
entiation potential were also enriched in ribosomal biogenesis™
(Fig. 4i). Ribosomal protein genes are also suppressed during
zebrafish hematopoiesis™ . Our results suggest that ribosomal pro-
tein genes are a conserved feature of stemness and they are down-
regulated during cell-type differentiation. On the other hand, the
upregulated genes were highly enriched for immunity pathways
(Extended Data Fig. 7i,j and Supplementary Table 15), which was
consistent with recent reports on human and mouse adult tis-
sues'**’. Together, we present a catalog of common features during
lineage development from invertebrates to vertebrates; particular
ribosomal protein genes are enriched in the less differentiated cells.

Gene regulation networks of cell-fate decisions across species. To
search for lineage-specific regulators among different species, we
systematically aligned homologous pairs of cell lineages from each
species across large evolutionary distances. Two methods, SAMap™
and MetaNeighbor*, were applied with different calculation prin-
ciples and homologous gene-mapping methods. SAMap enables
mapping single-cell transcriptomes between phylogenetically
remote species based on the gene expression similarity whereas
MetaNeighbor has high replicability in cell-type matching using
homologous weighted gene matrices. High confidence thresholds
(alignment scores with >0.5 in SAMap and Mean_AUROC >0.8
in MetaNeighbor) were adopted to obtain complementarily reli-
able cell-type matches across species. Some 47 of the 60 cell lineages
from 7 species were characterized into 8 meta-lineages (Extended
Data Fig. 8a). The Uniform Manifold Approximation and Projection
(UMAP) embedding based on pseudo-bulk cells per species proved
the rationality of meta-lineages, in which pseudo-bulk cells from the
same meta-lineage were more intensively clustered (Extended Data
Fig. 8b,c). Then, the specificity of TFs was characterized with
the modified regulon-specific scores with TF expression count
matrices as input per species”’. Lineage-specific TFs displayed
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sequence similarity within the meta-lineage across species (Extended
Data Fig. 8d-j). Vertebrates tended to have more conserved
species-specific TFs than invertebrates.

For lineage-common regulators among different species, we
found that several commonly upregulated TFs exhibited remark-
able convergence, including XBPI, JUND, FOSB, JUN, BHLHE40
and others (Fig. 5a), consistent with the enriched TFs in various
adult mouse tissues (Fig. 3¢ and Supplementary Table 10). These
TFs also displayed strong negative correlations with TFs that
were enriched in lineage-specific progenitor cells (GATA1, PAXe6,
NKX6-2, NEURODI, SOX10, OLIG2) in the Human Cell Landscape
(HCL), a comprehensive cell landscape for humans generated by
Microwell-seq'* (Fig. 5b and Supplementary Tables 16 and 17).
We suspect that these TFs may function as evolutionarily conserved
regulators to guide multi-lineage cells to differentiation and matu-
rity. We found that only one TF, Xbp1, stands out in all seven spe-
cies (Fig. 5a and Extended Data Fig. 7d). Therefore, we attempted
to further characterize the role of Xbpl in cell-type maturation.
Previous work has emphasized functions of the basic helix-loop-
helix TF Xbp1 for cell differentiation in various cell types, including
secretory cells, plasma cells, T cells, neurons, hepatocytes and other
cell types™®. As a putative common regulator, Xbpl showed an
upregulated expression pattern in most lineages of MCDA (Fig. 5¢).
We further dissected its regulatory role from a cell atlas perspec-
tive and found that stem regulators such as SOX4, SON and HES!
are the most negatively correlated with XBPI in the HCL (Fig. 5d).
In addition, the XBPI-binding motif in hematopoietic progenitors
and neural progenitors was less enriched than their corresponding
mature cell types in the single-cell assay for transposase accessible
chromatin using sequencing (scATAC-seq) data of the mouse and
human®-** (Fig. 5e,f).

Xbpl as a common regulator in multi-lineage progression. To
dissect the mechanistic roles of the potential lineage-common reg-
ulators Xbpl, we used clustered regularly interspaced short palin-
dromic repeats (CRISPR)-Cas9 to disrupt the Xbp1 locus in mice
(Fig. 6a, Extended Data Fig. 9a,b and Supplementary Table 18).
As most Xbp1~'~ embryos died at E13.5, we applied scRNA-seq to
analyze embryos at E12.5 from Xbp1*'~ heterozygous crosses before
massive embryonic lethality®* (Fig. 6b,c, Extended Data Fig. 9¢c
and Supplementary Table 19). We found that increased cell groups
after Xbp1 disruption were all related to progenitor and immature
cells (for example, fetal mesenchymal progenitors, early primi-
tive erythroid progenitor, muscle progenitors, radial glia, oligo-
dendrocyte progenitors and immature neurons) (Extended Data
Fig. 9d). In addition, when compared with wild-type (WT) cells,
Xbp1~'~ cells displayed higher entropy in a broad range of lineages,
which may be linked to the eventual failure of cell-type maturation
(Fig. 6d and Extended Data Fig. 9¢,f). Then we performed differ-
ential expression analysis and observed that a group of ribosomal
protein genes (for example, Rps3al and Rps7) were specifically
upregulated in XbpI~"~ cells. Moreover, progenitor markers such as
Sox4, Id2, Son and the imprinted gene H19 were enriched in Xbp1~'~
cells. The lineage-common regulators Fosb and Jun were down-
regulated in Xbpl~'~ cells (Fig. 6e and Supplementary Table 20).
Thus, disruption of XbpI caused mouse embryos to acquire a more
progenitor state.

To characterize the loss-of-function changes at protein lev-
els, we performed liquid chromatography-mass spectrometry
(LC-MS) proteomic analysis on both WT and knockout (KO)
embryos (Supplementary Table 21). Xbpl~~ embryos exhibited
higher expression level of pluripotency-related proteins such as
Lin28a, Lin28b%, Pcgf6 (ref. ") and Jarid2 (ref. ®) and lower expres-
sion level of cell type-specific proteins such as Snca in neural cells,
Clu in stromal cells, Afp in hepatocytes, Clgb in macrophage
and Blvrb in erythroid cells (Fig. 6f and Extended Data Fig. 10a).
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Fig. 5 | Inference of gene regulation during cell-fate decisions across species. a, Heatmap showing the cell-type frequencies of commonly upregulated
TFs in seven species. b, Regulatory network showing the top 20 most negatively relevant TFs in the HCL for the commonly upregulated TFs (Pearson'’s
correlation P £0.05). ¢, Scatter plot showing aggregated Xbp1 expression patterns in MCDA per lineage. Lines were estimated through linear regression
and the 95% confidence interval is shown in blue with the mean value in gray points. d, Heatmap showing the top 10 TFs most correlated with XBPTin the
HCL. e,f, Boxplot showing the z-scores of Xbp1 motif enrichment in neural cell types and hematopoietic cell types in the human (e) and the mouse (f) in
scATAC-seq data (human neural cell types: n=22,075 cells; human hematopoietic cell types: n=16,133 cells; mouse interneurons: n=>5,134 cells; mouse
granule cells: n=25,155 cells; mouse y-aminobutyric acid (GABA)-ergic neurons: n=2,041 cells; mouse hematopoietic cell types: n=24,125 cells). P values
are from a two-sided Wilcoxon's rank-sum test comparing the XbpT enrichment score between the progenitor cell types (the first box) and other cell types.
NS, not significant; P> 0.05, 'P<0.05, "P <0.07, P <£0.001, ""P <£0.0001. The exact P values have been displayed in Source data. Boxplots: center line,

median; boxes, first and third quartiles of the distribution; whiskers, highest and lowest data points within 1.5 x IQR.
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Fig. 6 | SCRNA-seq and high-resolution MS revealed gene and protein changes in Xbp1~/~ embryos. a, Overview of the CRISPR-Cas9 experiment. Xbp1~/~
and WT embryos at E12.5 were prepared and processed by Microwell-seq and LC-MS. b,c, UMAP visualization of 93,246 single cells from XbpT/~and WT

embryos at E12.5, colored by cluster identity (b) and genotype (€) (KO: n=49,498; WT: n=43,748). d, Entropy measurement of each cluster in Xbp1~/~
and WT embryos using the CCAT method (n=93,246 cells). The color represents the genotype. P values are from a two-sided Wilcoxon's rank-sum

test comparing entropies of two groups with different genotypes from the same cluster. NS, not significant; P> 0.05, ‘P <0.05, "P<0.01, "'P <0.001,

""P <0.0001. The exact P values have been displayed in Source data. Boxplots: center line, median; boxes, first and third quartiles of the distribution;
whiskers, highest and lowest data points within 1.5 x IQR. e, Dot-plot showing representative DEGs (ribosomal protein genes, progenitor marker genes and
lineage-common regulators) of each cluster in KO and WT cells. Ave. exp, Average expression; Pct. exp, Percentage of expressed cells. f, Barplot showing
representative protein expression levels (pluripotency-related proteins and cell type-specific proteins) between XbpT~~and WT mice (KO: n=3;

WT: n=3, mean+s.d.). A two-sided Student'’s t-test was performed to determine the statistical significance. The illustrative genes were manually selected
from the full heatmap, which is shown in Extended Data Fig. 10a. g, Heatmap showing significantly variable TFs in Xbp1~~ samples. Green and purple
indicate the chromatin accessibility of the XbpT-binding motif as determined by scATAC-seq and ChlIP-seq, respectively. The Xbpl-binding motif of the
mouse was from the CisBP database. Representative TFs are marked and were manually selected from Supplementary Table 23. Wilcoxon rank-sum test
(two-sided) was performed to identify significantly variable TFs and p-value adjustment was performed using bonferroni correction (p adjusted values <
0.05 and fold change > 1.25). h, Schematic of cross-species state manifold landscape.

In addition, canonical XbpI targets related to the unfolded protein
response (UPR)*-"! displayed no significant changes at the protein
level (Extended Data Fig. 10b). Furthermore, Xbp1 disruption in
mouse embryonic stem cells (mECSs) did not alter stem cell culture
and pluripotent gene expression, indicating that Xbpl transcrip-
tional regulation of lineage decisions is not downstream of the UPR
(Extended Data Fig. 10c,d and Supplementary Table 22).

We applied VarID” to qualify lineage-determining factor changes
in scRNA-seq datasets. These significantly variable TFs in XbpI~'~
samples displayed an Xbpl-binding motif in both scATAC-seq
and chromatin immunoprecipitation sequencing (ChIP-seq) data
(Fig. 6g and Supplementary Table 23). Our results indicate a direct
role of Xbpl in lineage maturation via transcriptional regula-
tion, during which XbpI functions through a mechanism that is
independent of the UPR.

Discussion

Overall, our comprehensive MCDA atlas of mouse cell differen-
tiation and maturation offers a powerful resource for investigating
cell-fate decisions. We characterize a general feature of decreased
entropy in most lineages during development. Our analysis of GRN
dynamics reveals both lineage-common and lineage-specific regu-
lators that contribute to cell-fate decisions. We highlight that Xbp1
is a critical and conserved transcriptional regulator of cell-type dif-
ferentiation in many lineages, as shown in our multi-omic analysis
of Xbp1 KO mouse embryos. However, the regulatory mechanisms
of lineage-common regulators still require further research and
functional validation in other settings such as in vitro differentia-
tion, de-differentiation and trans-differentiation.

In the present study, we propose a systematic view of the
cross-species state manifold landscape. Cells gradually progress
from a stem/progenitor state toward specific cell fates with decreased
entropy. During the process, divergent GRNs function following cell
differentiation, including lineage-specific and lineage-common reg-
ulators. Lineage-specific TFs probably direct cell fate as potential reg-
ulators for the emergence of each cell type, whereas lineage-common
ones probably represent general regulators to stabilize cell fates
across various cell types, such as gravity through the process of state
manifold'®”*. We identify examples of common GRNs as conserved
regulators of cell-fate stabilization (Fig. 6h). Thus, our work intro-
duces a new functional classification of gene-regulatory programs to
improve state manifold representations.

Tissue development and maturation atlases can provide global
views of the cell-fate decision process. Using our data, we identi-
fied new cell types with co-expression and ectopic expression
patterns during mouse development. We verified a myoendothe-
lial cell type that co-expressed makers of myocytes and endothelial
cells, a cell type that co-expressed makers of club and goblet cells

and hepatocyte-like cell types in the pancreas during mouse devel-
opment. We hypothesize that early transitional cell types may serve
as a pool of progenitors to broadly support the normal progression
of much functional tissue formation. We also observe new cell types
in neonatal mice that will require further verification and charac-
terization. By integrating developmental atlases across species, we
describe common characteristics at varying evolutionary distances
during development. Entropy is a concise, independent and robust
measurement for differentiation potential and we further associ-
ate it with ribosomal protein gene expression in evolutionarily
distant species.

Our single-cell analysis of KO mice provides a systematic insight
into gene function at the organism level. Similar strategies can be
applied to a series of KO embryos for the dissection of a functional
GRN during development. It would also be interesting to compare
quantitative gene function across different model systems and spe-
cies. Specific combinations of functional regulatory networks across
species may hint at evolutionary regularities of cell types. It is worth
noting that limitations of single-cell technologies such as the diges-
tion process, batch effects and sequencing depth should be taken
into consideration during such analyses.

In conclusion, we constructed an MCDA and systematically
characterized the cell-fate regulatory programs during development
across species, which will lead to new understandings of cell-fate
decisions and the cellular state manifolds.
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Methods

Mouse experiments to supplement the MCDA database. WT C57BL/6] mice
were ordered from Shanghai Laboratory Animal Center. All mice were housed

at Zhejiang University Laboratory Animal Center in a specific pathogen-free
facility with individually ventilated cages. The room had a controlled temperature
(20-22°C), humidity (30-70%) and light program (12 h light:dark cycle). The mice
were provided free access to a regular rodent chow diet.

To obtain embryonic samples (E10.5 embryos, E12.5 embryos), C57BL/6 mice
were mated. Noon on the day the vaginal plug was visible was considered to be
E0.5. Sex was not determined before tissue pooling for E10.5, E12.5 and PO samples
(except for the gonads). Embryos were collected from at least three independent
litters (in total three to nine embryos) per development stage. For P10 and P21
samples, testes were collected from male mice and all the other tissues were
collected from female mice.

All experiments performed in the present study were approved by the Animal
Ethics Committee of Zhejiang University. All experiments conformed to the
relevant regulatory standards at Zhejiang University Laboratory Animal Center.

Generation of Xbpl KO mESC and mouse models. SgRNAs targeting exon 2
of Xbp1 were designed using the Zhang laboratory CRISPR design website tool
(http://crispr.mit.edu). Oligonucleotides were synthesized and then cloned into
an epiCRISPR-Cas9 vector’. The vector was extracted using an EndoFree Mini
Plasmid Kit II (Tiangen Biotech, catalog no. 4992422) following the manual.
Approximately 4 X 10° E14 mESCs were transfected with 2 ug of the vector with
Lipofectamine 3000 (Life Technologies, catalog no. L3000001) based on an online
protocol. At days 2-10, cells were selected with puromycin (0.5-1.0 pgml™). Then,
single cells were reseeded in a 6-well plate and cultured in mESC media for 7-10d.
Individual colonies were picked and genotyped. The genomic RNA target sites and
oligonucleotides used in the present study can be found in Supplementary Table 22.
Xbp1 KO C57BL/6] mice were generated by Nanjing Gempharmatech. Mice
were genotyped by PCR using genomic tail DNA. To obtain live KO embryos at
E12.5 for scRNA-seq, we used a Scientific Phire Animal Tissue Direct PCR Kit
(Thermo Fisher Scientific, catalog no. F140WH) to genotype embryos quickly. All
primers used for KO and genotyping are listed in Supplementary Table 18.

Immunofluorescent staining. Fresh mouse tissues were frozen in disposable
molds containing optimal cutting temperature compound. Frozen sections

were cut at 10 um in CryoStar NX50 (Thermo Fisher Scientific), mounted on
microscope slides and stored at —80 °C. Before staining, the sections were thawed
for 20 min and 4% formaldehyde in phosphate-buffered saline (PBS) was added
to cover the sections. Tissues were fixed for 15 min at room temperature. After
fixation, sections were washed three times with PBS. Cells were permeabilized by
covering the sections with 0.1% Triton X-100 in PBS for 10 min. Then, the sections
were washed three times with PBS and blocked with 3% bovine serum albumin in
PBS for 1h at room temperature. Primary antibodies (anti-ESAM (1:50; Thermo
Fisher Scientific, catalog no. MA5-24072), anti-Myl9 (1:400; Abcam, catalog no.
ab187152), anti-Scgblal (1:50, R&D, catalog no. MAB4218-SP), anti-tff2 (1:200;
ProteinTech, catalog no. 13681-1-AP) and anti-AFP (1:200, Affinity, catalog

no. AF5134)) diluted in blocking solution were added to cover the sections.

The slides were placed in a wet box and incubated overnight at 4°C. Relevant
Alexa Fluor-488/594-conjugated secondary antibodies (1:1,000; Thermo Fisher
Scientific, catalog nos. A-21208, A-21206 and A-11037) were used for labeling.
The slides were then washed three times with blocking solution and stained with
DAPI. Glass coverslips were then attached to the slides using mounting media.
Immunofluorescence images were obtained using Olympus VS200.

Western blot. The mouse embryos were solubilized in radioimmunoprecipitation
assay lysis buffer (20 mg per 200 pl; Beyotime, catalog no. P0013D). The mixture
was lysed using a homogenizer for 5min on ice. Tissue lysates were then cleared
by centrifugation at 14,000¢ for 10 min at 4 °C. Equal amounts of total protein
were used for experimental and control. Samples were fractionated using sodium
dodecylsulfate (SDS)-polyacrylamide gel electrophoresis and transferred to a
poly(vinylidene fluoride) membrane. After blocking with 5% milk in tris-buffered
saline + Tween (TBST) for 1h at room temperature, the membranes were

probed with the corresponding primary and secondary antibodies. Primary
antibodies (anti-Xbp1 (1:1,000; Abcam, catalog no. ab37152), anti-p-tubulin
(1:3,000; HUABIO, catalog no. EM0103)) and secondary antibodies (anti-mouse
immunoglobulin (Ig)G (1:5,000; TransGen Biotech, catalog no. HS201-01),
anti-rabbit IgG (1:5,000; Multi Science, catalog no. GAR007)) diluted in TBST
were used.

Cell preparation. Mouse tissues were minced into pieces of ~1 mm on ice using
scissors. The tissue pieces were transferred to a 15-ml centrifuge tube, rinsed

twice with cold Dulbecco’s (D)PBS and suspended in 5ml of a solution containing
dissociation enzymes. The samples were treated with various enzymes for different
periods of time (Supplementary Table 3). During dissociation, the tissue pieces
were pipetted up and down gently several times until no tissue fragments were
visible. The dissociated cells were centrifuged at 300g for 5min at 4°C and then
resuspended in 3 ml of cold DPBS. After passage through a 40-um strainer

(Biologix), the cells were washed twice, centrifuged at 300g for 5min at 4°C and
resuspended at a density of 1x 10° cellsml™ in cold DPBS containing 2mM EDTA.

ScRNA-seq. Single-cell complementary DNA libraries were prepared using the
Microwell-seq'". Briefly, cells were loaded on the microwell plate and extra cells
were washed away gently using ice-cold PBS. Then bead suspension (sequences
listed in Supplementary Table 2) was loaded on the plate and extra beads were
washed away on a magnet. The plate was covered using cold lysis buffer (0.1 M
Tris-HCI, pH 7.5, 0.5M LiCl, 1% SDS, 10 mM EDTA and 5mM dithiothreitol
(DTT)) and incubated on ice for 12 min. Then, beads were collected and washed
using 6 X saline sodium citrate and 50 mM Tris-HCI, pH 8.0. After washing, beads
were resuspended in reverse transcription (RT) mix and incubated at 42 °C for

90 min. After RT, beads were washed in TE-TW (10 mM Tris-HCL, pH 8.0, 1 mM
EDTA, 0.01% Tween20) and 10 mM Tris-HCI, pH 8.0. Beads were resuspended in
exonuclease I mix and incubated at 37 °C for 30 min. Then, beads were washed in
TE-SDS (1XTE + 0.5% sodium dodecyl sulfate), TE-TW and 10 mM Tris-HCI, pH
8.0. Beads were resuspended in PCR mix with TSO (template switch oligo) primer
to amplify the cDNA. After PCR, beads were removed and cDNA products were
purified using 0.8 Xx VAHTS DNA Clean Beads (Vazyme. catalog no. N411-01).

A more detailed version of the Microwell-seq protocol is available in Han et al."".
Then, the purified cDNA libraries were fragmented using a customized transposase
that carries two identical insertion sequences. The customized transposase was
included in the TruePrep Homo-N7 DNA Library Prep Kit for Illumina (Vazyme,
catalog no. TD513) or TruePrep Homo-N7 DNA Library Prep Kit for MGI
(Vazyme, catalog no. L-N7E461L0). The fragmentation reaction was performed
according to the instructions provided by the manufacturer. We used customized
P5 primer (listed in Supplementary Table 2) and VAHTS RNA Adapters set3-set6
for Illumina (Vazyme, catalog no. N809/N810/N811/N812) or our MGI P7 primers
(N8XX, listed in Supplementary Table 2) to specifically amplify fragments that
contain the 3’-ends of transcripts. Other fragments will form self-loops, impeding
their binding to PCR primers. The PCR program was as follows: 72 °C for 3 min;
98°C for 1 min; 5 cycles of 98 °C for 155, 60 °C for 30s and 72 °C for 3 min; 72°C
for 5min; and a 4°C hold. The PCR product was purified using 0.9 x VAHTS DNA
Clean beads (Vazyme, catalog no. N411-01). Then, a 25-ul PCR mix (1 X HiFi
HotStart Readymix and 0.2 pM 2100 primer) was added to each sample. The PCR
program was as follows: 95 °C for 3 min; 5 cycles of 98 °C for 205, 60°C for 15s

and 72°C for 15s; 72 °C for 3 min; and a 4°C hold. To eliminate primer dimers and
large fragments, 0.55-0.15X VAHTS DNA Clean beads were then used to purify
the cDNA library. The size distribution of the products was analyzed on an Agilent
2100 bioanalyzer, and a peak in the range 400-700 bp was observed. Finally, the
samples were subjected to sequencing on the Illumina HiSeq (data for MDCA)

or MGI DNBSEQ-T?7 (data for Xbp1 KO experiment). For MGI sequencing, we
applied the protocol provided by the VAHTS Circularization Kit for MGI (Vazyme,
catalog no. NM201-01) to obtain single-stranded circular cDNA available for DNB
(DNA Nanoball) generation. We also replaced the official R1 sequencing primers
with our customized R1 sequencing primers A and B (listed in Supplementary
Table 2) to ensure the completion of the sequencing.

Processing of Microwell-seq data. Microwell-seq datasets were processed as
described'’. Reads were aligned to the Mus_musculus. GRCm38.88 genome
using STAR™ (v.2.5.2a). The digital gene expression (DGE) data matrices were
obtained using the Drop-seq core computational protocol (available at website
http://mccarrolllab.org/dropseq) with the default parameters. For quality
control, we filtered out cells with detection of < 500 transcripts. Cells with a high
proportion of transcript counts (> 20%) derived from mitochondria-encoded
genes were also excluded. Cells were also corrected for RNA contamination and
background-removed DGE data were constructed'’. The SCANPY” (v.1.6.0)
python package and Seurat” (v.3.2.2) R package were used to load the cell-gene
count matrix and perform downstream analysis.

Clustering of the single-cell data matrix. For clustering of the complete
mouse tissue dataset (520,801 cells), qualified cells were processed using
SCANPY (v.1.6.0) in a Python (v.3.6.9) environment. Background-removed
DGE data for cells analyzed in each tissue and genes expressed in at least 20 cells
were used as inputs'’. Then, DGE data were In(c.p.m./(100+ 1)) transformed
(where c.p.m. is counts min~"). We selected approximately 3,000 highly variable
genes according to their average expression and dispersion. We then regressed
out unique molecular identifiers and gene numbers and scaled each gene to unit
variance, and the values beyond an s.d. of 10 were clipped. For the mouse tissue
dataset, we chose PCs for principal component analysis (PCA) according to elbow
plots and 50 PCs were used to create a neighborhood graph for the cells. We then
used Leiden clustering to cluster with resolution =8 and k=25. Marker genes
were calculated using Wilcoxon’s rank-sum test (two-sided) and p-value
adjustment was performed using the Benjamini-Hochberg correction. For
visualization, t-SNE was used.

For kidney data, bbknn™ (v.1.4.0) was performed by using ridge regression
to remove batch effects. For clustering of single tissues, the Seurat pipeline was
used with the default parameters for fewer cells. Cell type and lineage information
of each cell type were manually annotated according to the marker genes
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reported in a previous paper'’. A hierarchical tree of the MCDA was computed
using the correlations of average gene expression of 95 clusters with highly
variable genes.

Estimation of the variance of the MCDA. To estimate the variance in the data
depending on age, tissue or sex, we first aggregated the gene expression for each
tissue at multiple time points. Using the above metadata as input, we performed
principal variance component analysis (PVCA) using R Package pvca (v.1.26.0,
https://www.bioconductor.org/packages/release/bioc/html/pvca.html) with the
default parameters. It leverages the strengths of two popular data analysis methods
PCA and variance components analysis and integrates them into a new algorithm.
It also uses the eigenvalues associated with their corresponding eigenvectors as
weights, to quantify the magnitude of each source of variability. All factors as well
as their interaction terms are treated as random effects in the mixed model for
variance component estimation. It fits a linear mix-effects model to data. Items
such as ‘tissue’ and ‘gender’ are variances explained by interactions of two factors
instead of the union of two factors.

Inference of the TFs for MCDA. As a proof of principle, we applied
experimentally verified, tissue-specific TFs from the literature’ as the gold
standard. We included both tissue-restricted TFs and nonuniformally expressed
TFs in different tissues as tissue-specific TFs. For datasets used, we selected
high-quality cells with > 800 gene numbers as single-cell datasets, and also
aggregated every 20 single cells in each cell type to produce pseudo-cells to
enrich our choices of input datasets. We compared SCENIC* (v.0.10.0) and
VIPER-DOROTHEA® (viper v.1.28.0 and dorothea v.1.6.0) for inferring specific
TFs in the tissues. The DOROTHEA database provided TFs from different types
of evidence with a different confidence. We used ABCDE (1,113 TFs) categories
of DOROTHEA TFs in our comparison. Regulon specificity scores (RSSs)* were
calculated to represent TF specificity in the tissue for both VIPER-DOROTHEA
and SCENIC. Then we employed the youden index (sensitivity + specificity — 1)
to find the best performance of VIPER-DOROTHEA and SCENIC in classifying
tissue-specific TFs in both sensitivity and specificity. These TFs were compared
with the gold standard lists for four aspects: sensitivity, specificity, false-positive
rate and area under the precision-recall curve.

To define regulatory programs in MCDA, SCENIC and VIPER-DOROTHEA
were applied first to infer the GRN with default parameters using high-quality
single cells with > 800 genes. For VIPER-DOROTHEA, ABCDE (1,113
TFs) categories of DOROTHEA TFs were used. Second, z-scaled RSSs for
VIPER-DOROTHEA and z-scaled TF activity scores of SCENIC in each
stage lineage were calculated as a TF-by-lineage matrix. Then, fuzzy c-means
clustering was performed on the TF-by-lineage matrix calculated by SCENIC
and VIPER-DOROTHEA, resulting in a TF-by-module ‘membership matrix’
and a lineage-by-module ‘centers matrix’ The centers matrix with 15 modules
was used to generate the heatmap. We defined a threshold membership score
(threshold =0.2) in which TFs were assigned to a module. With the fuzzy c-means
heatmap, we identified which modules/TFs were lineage specific and which were
lineage sharing. We assigned TFs into specific lineages according to the aggregated
patterns of modules manually and the resulting TFs were classified into three
collections with high to low confidence: collection A consisted of TFs from both
methods, collection B were TFs only from SCENIC and collection C TFs only from
VIPER-DOROTHEA (Supplementary Table 10).

Analysis of time-related genes during cell-type maturation. Early organ
formation in mice begins at E10.5 and cells undergo differentiation to reach
maturity during development®. Thus, we identified time-related genes that showed
upregulation patterns at the expression levels during the developmental processes
by using Spearman’s rank correlation analysis for different lineages in each tissue®’.
Spearman’s rank correlation coefficient, which has low requirements on data
distribution and a high tolerance for outliers, can directly reflect the monotonous
relationship between variables, so we adopted it. We treated the seven-stage
information (E10.5, E12.5, E14.5, PO, P10, P21 and adult) as the vectors labeled (1,
2,3,4,5,6and 7), and then calculated the correlation between the gene expression
levels across seven development stages and the vectors for each stage. The larger
the absolute value of the correlation coefficient, the stronger the monotonicity of
the gene expression level and timepoints. The TFs with Spearman’s rank correlation
coefficient > 0.8 in at least four lineages in five tissues with a P<0.05 were retained
as the common time-upregulated TFs during lineage maturation.

Single-cell entropy analysis. Single-cell entropy estimation was performed

using three methods: CCAT* (SCENT v.1.0.2), SLICE” (v.0.99.0) and StemID*
(RaceID v.0.2.2). To obtain the best performance, normalization was dependent
on the computational methods. For CCAT, it is an approximation of network
entropy. We applied CCAT to compute the correlations with the connectome and
transcriptome based on the ‘net13Jun12.m’ PPIs. We performed CCAT analysis by
using a weighted matrix to leverage all the homology genes between human and
other species. The weighted matrix was obtained by converting the gene homology
relationship (one-to-one, one-to-many, many-to-one and many-to-many) into a
binary matrix and normalized it to one human gene. In StemID, it estimates the
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Shannon entropy of a cell’s transcriptome directly based on the expression of each
gene. We used StemID to infer entropies with default parameters. For SLICE, it
established a kappa matrix of gene ontology (GO) annotations of the human or
mouse to evaluate the probability distribution of the functional activation of each
cell. SLICE was performed as a deterministic calculation of scEntropy of individual
cells over the GO cluster activation profile with iter =50. Cells were downsampled
to 2,000 per tissue per stage to cut the calculation burden of SLICE and StemID. In
summary, CCAT calculates the entropy-related values from the perspective of the
network entropy of the gene interaction network. SLICE and StemID calculate the
entropy values by using the activation of the gene pathway and the gene expression
as probabilistic events, respectively. Although the principles of the three methods
are different, their central idea is to couple entropy with developmental potential.
They evaluate biological systems using physical concepts and reflect the physical
properties of biological systems.

Construction of a cell-type hierarchy across species and gene regulation
analysis. For invertebrates, to infer the topological relations of cell-type
development, we first constructed a PAGA graph* per lineage using SCANPY
(v.1.6.0). We processed the data following the steps suggested by SCANPY,
including total count normalization, log(1P) transformation, highly variable gene
extraction, potential regression of confounding factors of genes and counts, scaling
to z-scores and PCA. Then, we computed a neighborhood graph among data
points and used UMAP for topologically faithful embedding with min_dist=0.1.
Then, PAGA was performed with iter =1,000. The cell-type tree layout was based
on a minimum spanning tree fitted to edges weighted by inverse connectivity.
Edges in an abstracted graph with a probability > 0.0005 were considered as
possible connections of cell-type hierarchies. For S. mediterranea, cell-type
hierarchies were obtained from the consolidated lineage tree, which was provided
in a paper'” and, for C. intestinalis, lineage and stage information were directly from
a paper'®. For complex vertebrates, we connected cell states across time according
to gene expression similarity*. For each tissue, we asked each adult cluster to ‘vote’
on its most likely ancestor cluster from the fetal stage. To eliminate the influence
of cell number, we randomly sampled 150 cells to embed them into the PCA space
learned from the second timepoint only and kept nontrivial PCs as defined above.
Then, in this embedding, for each cluster in the late timepoint, the cluster
identities of the five nearest neighbors of each constituent cell from the previous
timepoint were determined using a Euclidean distance metric. The percentages
of votes cast for each possible ancestor were calculated and the maximum
frequencies of votes (20-100%) of the cells in the cell group decided the ancestor
group. For zebrafish datasets, we integrated the data using Seurat (v.4.0.1)
which anchors integration functions to do the batch correction before
the PCA. Sankey plots were generated using the networkD3 (v.0.4,
https://christophergandrud.github.io/networkD3) R package. For atlas
projects across species, we performed the same differential expression analysis
for cells in each tissue-cell type/lineage-cell type separately according to the
cell-type hierarchy using FindMarkers function in Seurat (v.4.0.1). Wilcoxon’s
rank-sum test was performed to determine the statistical significance and the
Benjamini-Hochberg correction was used for the p-value adjustment. The
top common DEGs (20-100% of total cell-type pairs, mean 60-94% lineages,
p adjusted values <0.1, log,(fold-change) (log,(FC)) > 0.25, min_pct>0.1)
were estimated according to the frequency of differential expression in all
unstable-to-stable cell-type pairs across species. To match the two timepoints
(fetal and adult) of humans, only the E14.5 and adult stages of mice and 24-h
post-fertilization and 3-month stages of zebrafish were considered for cross-species
analysis. Genes that display consistent patterns in at least three species were
defined as commonly upregulated and downregulated genes. Genes that were
either ‘up-’ or ‘down-"regulated were excluded in the analysis.

The top 20 most negative TFs of the upregulated TFs were determined
by Pearson’s correlations based on single-cell datasets and visualized by
Cytoscape (v.3.5.0)".

Collection and prediction of orthologous genes and TFs. For H. sapiens,

M. musculus, D. rerio and C. elegans, orthologous pairs were obtained from
Ensembl v.96 by BioMarkt. The transcriptome of S. mediterranea was downloaded
from the PlanMine database® (S. mediterranea, dd_Smed_v6). The transcriptome
of H. vulgaris was downloaded from the website https://research.nhgri.nih.gov/
hydra/download/?dl=tr. The transcriptome of C. intestinalis was downloaded from
http://ghost.zool.kyoto-u.ac.jp/download_kh.html. Then, the protein-coding
sequence (CDS) was predicted by TransDecoder™ (v.5.3.0) with the default
parameters. Orthologous pairs were predicted by OrthoFinder® (v.2.2.6) with CDS
files as the input. In the present study, we considered only one-to-one orthologous
pairs with humans for commonly regulated genes. As for species-specific TFs,

TFs of H. sapiens, M. musculus, D. rerio and C. elegans were downloaded from the
AnimalTFDB 3.0 database®. Other species-specific TFs except H. vulgaris were
obtained from a paper”’. Genes from H. vulgaris were obtained with Swiss-Prot IDs
of best hits. Thus, the TFs of H. vulgaris were defined by the genes annotated with
the GO terms downloaded from the uniport website: DNA-binding TF activity

or TF binding. Those Swiss-Prot IDs of best hits were also checked for TFs from
AnimalTFDB 3.0 and used as a supplement to TFs.
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Lineage-specific TFs analysis across species. We applied two methods to

calculate the lineage evolution relationship across species with the pseudo-cell

as inputs (aggregated every 20 cells from each cell type): SAMap™ (v.0.3.0) and
MetaNeighbor™ (pyMN v.0.1.0). SAMap enables mapping single-cell transcriptomes
between phylogenetically remote species based on the expression similarity whereas
MetaNeighbor has high replicability in cell-type matching using homologous
weighted gene matrices. For SAMap, it constructs a gene—gene bipartite graph

with cross-species edges connecting homologous gene pairs, weighted by protein
sequence similarity. For MetaNeighbor, we constructed weighted matrices

to leverage all the homology genes between humans and other species. The
weighted matrices were obtained by converting the gene homology relationship
(one-to-one, one-to-many, many-to-one and many-to-many) into a binary matrix
and normalized it to one human gene each. Lineage pairs with high confidence
thresholds (alignment scores with > 0.5 in SAMap and Mean_AUROC > 0.8 in
MetaNeighbor) were considered as highly reliable and biologically plausible matches
from different aspects. The combined projection of seven species was obtained from
the function AMAPscatter’ of SAMap. The specificity of TFs was characterized
using modified regulon specificity scores in SCENIC with TF expression count
matrices as input®”. We then calculated the z-score-normalized TF specificity score
to predict the essential TFs in each lineage. Development-related, lineage-specific
TFs were intersected with upregulated genes across species. The sequence similarity
score was determined by the National Center for Biotechnology Information’s
(NCBT’s) BLAST with transcriptome or proteome data as inputs. An E-value
threshold of 1 X 10° was set. It was also integrated into SAMap.

Pathway enrichment analysis. We used clusterProfiler” (v.3.14.3) to perform GO
biological pathway enrichment analysis and orthologous genes were taken as the
universe. Hypergeometric test was performed to identify significant GO terms and
the Benjamini-Hochberg correction was used to adjust p-values. We considered
biological pathways with p adjusted values < 0.05. We used REVIGO® to visualize
the enrichment results. For Extended Data Fig. le, we used clusterProfiler to
perform GO biological pathway enrichment analysis for DEGs at neighboring
stages. We considered biological pathways with p adjusted values <0.01. For

each stage, the enrichment terms, as determined by clusterProfiler, were used to
manually combine into 13 ‘super terms’ for biological processes. For Extended Data
Fig. 1i, GO enrichment analysis was first computed using the DEGs of the kidneys.
Then, the enrichment scores of the terms were calculated and aggregated for each
stage using AUCell*.

PPI analysis. We downloaded the PPI resource of human genes from STRING*
(v.11). Experimentally validated interactions from humans and transferred by
homology from other species were used for the analysis. Then, we compared

the log,,(PPI no.) of four groups, the upregulated genes in at least three species,
downregulated genes in at least three species, other conserved genes in at least
three species and all other genes in the PPI resource. We also downloaded the gene
functional assignments from the eggNOG database (v.5.0) and used the mammals’
nonsupervised orthologous groups (maNOG) to assign genes into 26 categories™.
The 26 gene categories were arranged by their average number of PPIs in ascending
orders. Statistical analyses were done with R package ggpubr (v.0.4.0, https://rpkgs.
datanovia.com/ggpubr) for two-tailed Wilcoxon’s rank-sum test to determine the
statistical significance of the differences between two groups.

Analysis of the CCAT-driving gene across species. CCAT directly measures the
correlation between transcriptome and connectome and will therefore be positive
if most of the network hubs are overexpressed in more potent cells”. Thus, we

used the number of adjacent edges to evaluate the degree of each gene in the PPI
network and the top 20% of genes were regarded as network hubs. We intersected
them with the commonly downregulated genes we found in the manuscript (highly
expressed in undifferentiated cells, Supplementary Table 13) in each species as
CCAT-driving genes in more potent cells. Genes that appeared in at least five
species were regarded as conserved CCAT-driving genes. We performed gene
enrichment analysis using clusterProfiler on those conserved CCAT-driving genes.
The biological processes related to ribosome biogenesis were marked red according
to a previous paper™’.

Analysis of Xbp1 expression pattern in MCDA. Given the low detection rate of
TFs in the single-cell experiment, we chose high-quality cells with > 800 genes

and calculated the average expression of Xbp1 by normalization to a group of
stably expressed gene sets generated from scMerge R package (v.1.2.0, https://
bioconductor.org/packages/release/bioc/html/scMerge.html). We used linear
regression to measure the expression trend of Xbp1 with a 95% confidence interval.

Cell-type composition analysis. Significant differences in cell-type composition
between groups were assessed using a propeller test from the speckle R package
(v.0.0.1, https://github.com/Oshlack/speckle/). We considered groups with false
discovery rate (FDR) <0.01 to represent significantly changed cell types.

Gene expression variability analysis. To detect sensitive changes in weakly
expressed genes, we calculated the gene expression variability using VarID"

(RacelID, v.0.2.2). We ran VarID with regNB=FALSE, k=10 for the pruning step,
no_cores=10 and default parameters otherwise.

Analysis of global proteomics data. LC-MS proteomic analysis was carried out
by PTM Bio”". Briefly, mouse embryos were ground into powder in liquid nitrogen
and suspended in an ice-cold lysis buffer with 1% Triton X-100 and 1% protease
inhibitor based on occasional sonication. The cell lysates were centrifuged at
12,000¢ and 4°C for 15min. The supernatants were collected and the protein
concentration was measured. Proteins were precipitated using 20% trichloroacetic
acid for 2h at 4°C and then centrifuged at 4,500¢ for 5min. The precipitate was
washed three times with cold acetone. The dried protein pellets were resuspended
within 200 mM tetraethylammonium bromide based on occasional sonication and
then digested with trypsin overnight. DTT was added to a final concentration of
5mM and the supernatants were incubated at 56 °C for 30 min. lodoacetamide was
added to a final concentration of 11 mM and the supernatants were incubated in
the dark for 15 min. Peptides were separated using NanoElute and analyzed using
timsTOF Pro. The resulting MS-MS data were processed using the MaxQuant
search engine (v.1.5.2.8, https://www.maxquant.org) and mapped to the Mus_
musculus_10090 database. The FDR was adjusted to < 1% and the minimum
score for modified peptides was set to >40. Trypsin/P was defined as the cleavage
enzyme, and up to two missing cleavages were allowed. For proteomic analysis,
the first search range was set to 5 p.p.m. for precursor ions and the main search
range was set to 5p.p.m. and 0.02 Da for fragment ions. Carbamidomethylation

of cysteines was defined as the fixed modification and oxidation on methionine
was defined as the variable modification. The quantification method used was
label-free quantification, the FDR was adjusted to <1% and the minimum score for
modified peptides was > 40.

ScATAC-seq and ChIP-seq data analysis. We used ChromVAR” (v.1.12.0) to
calculate the accessibility of the XbpI motif in scATAC-seq datasets for comparing
the XbpI motif enrichment between differentiated states and undifferentiated
states in both the human and the mouse. The mouse scATAC-seq data were
downloaded from two papers®* and human scATAC-seq data from another
paper®. The motif PWM was downloaded from the CisBP database (http://cisbp.
ccbr.utoronto.ca). For better visualization, we arranged the cells according to their
differentiated states. This comparison was restricted to the cell-type annotations
provided. As shown, the XbpI motif was less opened in undifferentiated cells in
both human and mouse tissues in neuron cell types and hematopoietic cell types.
ChIP-seq data for Xbp1 were downloaded from previous studies®>”"*>**. The target
genes were binarized and integrated for visualization.

Statistics and reproducibility. No statistical methods were used to predetermine
sample size; 520,801 single cells were analyzed in total for a time-series MCDA
construction. A total of 52 mouse tissues from different development stages were
analyzed. Two to four replications were done for different tissues. The results of
major cell-type clusters are reproducible. Experimental mice and embryos were
randomized before sample preparation. Different single cells were randomly
captured before analysis. For all experiments, investigators were blinded to group
allocation during the data collection and analysis. All related statistical methods
and sample size are described in the figure legends and Methods.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

The data generated in the present study can be downloaded from the NCBI’s
Gene Expression Omnibus under accession nos. GSE176063 and GSE178217.
The raw and processed files of MCDA are at accession no. GSE176063. The raw
and processed files of WT and Xbp1 KO embryos are at accession no. GSE178217.
Processed count matrices and cell annotations are provided on the figshare website
(https://figshare.com/s/340e8e7f349559f61ef6), including the development stage,
tissue of origin, lineage information and cell-type annotations. We have provided
separate datasets for each tissue and the merged datasets for the MCDA. We

have also provided an interactive website (http://bis.zju.edu.cn/MCA) to enable
public access to the data. The proteomics data was provided in the Proteomics
Identifications Database (PRIDE) under accession no. PXD032847. The following
publicly available datasets were used in the study: Mus_musculus. GRCm38.88
genome, Mus_musculus_10090 database, AnimalTFDB 3.0 database, STRING
database (v.1.1), eggNOG database (v.5.0), Ensembl v.96; the S. mediterranea
dataset generated by Plass et al.”* (accession no. GSE103633), the C. elegan dataset
generated by Packer et al."” (accession no. GSE126954.); the C. intestinalis dataset
generated by Cao et al.'® (accession no. GSE131155); the H. vulgaris dataset
generated by Siebert et al."” (accession no. GSE121617); the D. rerio dataset
generated by Li et al.”” (GSE178151); the H. sapiens dataset generated by Han et al."
(GSE134355); and part of the M. musculus dataset (E14.5 and adult) generated by
Han et al." (accession nos. GSE108097 and GSE134355). The mouse scATAC-seq
dataset was generated by Cusanovich et al.*’ (accession no. GSE111586,
https://atlas.gs.washington.edu/mouse-atac/data) and Di Bella et al.**
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(accession no. GSE153164), and the human scATAC-seq dataset by Domcke et al.*®
(descartes.brotmanbaty.org).

Code availability
Detailed code is available at GitHub (https://github.com/ggjlab/MCDA) and
Zenodo (https://zenodo.org/record/6548256#.Yn92F-hBw2w)®.
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Extended Data Fig. 1| See next page for caption.
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Extended Data Fig. 1| Construction of the MCDA. a, Hierarchical trees showing the relationship between 95 cell types in MCDA, colored by lineage.

b, t-SNE visualization of 520,801 single cells from seven developmental stages of mice, colored by lineage. They share the same color legend of lineages.
¢, t-SNE visualization of 520,801 single cells from different developmental stages of mice, colored by tissue. d, Heatmaps showing the number of
differentially expressed genes (DEGs) in each developmental stage across the ten tissues of mice. DEGs between two stages of cells were identified

using a Wilcoxon rank sum test. e, Summary of the GO enrichment analysis performed on the DEGs in each developmental stage. f, Visualization of

the top 10 principal components of PCA in MCDA. Colors represent tissues, which is the same in Extended Data Fig. 1c. g, Lollipop chart displaying the
gene expression variance explained by residuals (that is, biological and technical noise) or experimental factors such as tissue, stage, gender, and their
respective combinations. Items like “tissue and gender” are variances explained by interactions of two factors instead of the union of two factors. h, UMAP
visualization of 57,118 single cells in the kidneys at 7 different time points, colored by stage. i, Summary of the GO enrichment analysis performed on the
DEGs in the kidneys across different stages. The red marks the go terms related to physiological functions of renal functions.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | t-SNE maps for examples of analyzed tissues in MCDA. t-SNE maps for single-cell data from brain at PO (a, n =9,265 cells), P10
(b, n=6,100 cells), P21 (¢, n=4,433 cells) stages, heart at PO (d, n=3,948 cells), P10 (e, n = 5,383 cells), P21 (f, n=4,054 cells) stages, intestine at PO
(g, n=9,101 cells), P10 (h, n=17,909 cells), P21 (i, n = 9,365 cells) stages, kidney at PO (j, n=13,155 cells), P10 (k, n=12,129 cells), P21 (I, n=5,700 cells)
stages, liver at PO (m, n=9,980 cells), P10 (n, n=9,259 cells), P21 (0, n=5,867 cells) stages, lung at PO (p, n="5,906 cells), P10 (q, n=11,314 cells),

P21 (r, n=6,391 cells) stages, and pancreas at PO (s, n=5,639 cells), P10 (t, n=11,007 cells) stages.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | t-SNE maps for examples of analyzed tissues in MCDA. t-SNE maps for single-cell data from pancreas at P21 (a, n = 4,858 cells)
stages, stomach at PO (b, n=4,073 cells), P10 (¢, n=22,599cells), P21(d, n=9,945 cells) stages, testes at PO (e, n=9,034 cells), P10 (f, n=15,808 cells),
P21 (g, n=9,095 cells) stages, uterus at PO (h, n=4,561 cells), P10 (i, n=4,841 cells), P21 (j, n=9,077 cells) stages, and embryo at E10.5 (k, n=26,551
cells) and E12.5 (I, n=72,792 cells) stages.
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Extended Data Fig. 4 | Examples of novel cell populations. a, Feature plots in the t-SNE map of P10 lung (n=11,314 cells). Cells are colored according to
the expression of the indicated marker genes or two genes. The red boxes magnify the co-expressed cell types in the tissues. b, Immunofluorescence assay
for the club cell marker gene Scgblal (green) and goblet cell marker gene Tff2 (yellow) in P10 lung. The red boxes indicate the co-expressed locations. The
experiment was replicated three times with similar results. Scale bar, 20 pm. ¢, d, Left: feature plots of Afp in the t-SNE map of PO pancreas (¢, n=5,639
cells), P10 pancreas (d, n=11,007 cells). Cells are colored according to the expression of Afp. Right: immunofluorescence assay for the hepatocyte

marker gene Afp (green) in PO (¢) pancreas and P10 (d) pancreas. The experiment was replicated three times with similar results. Scale bar, 20 pm.

e, Heatmap shows the differentially expressed genes between liver hepatocytes and pancreas hepatocyte-like cells at the PO stage. Wilcoxon rank-sum
test (two-sided) was performed to identify differentially expressed genes and p-value adjustment was performed using bonferroni correction (p adjusted
values < 0.05, fold change > =2). f, Heatmap shows the differentially expressed genes between liver hepatocytes and pancreas hepatocyte-like cells at
the P10 stage. Wilcoxon rank-sum test (two-sided) was performed to identify differentially expressed genes and p-value adjustment was performed using
bonferroni correction (p adjusted values < 0.05, fold change > 2).
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Entropy estimations of the MCDA using. a, Entropy measurement of cells in MCDA using the SLICE method. The color represents
the stage. P-values are from a two -sided Wilcoxon rank sum test comparing entropies of two different development stages (n=60,065 cells, ns: not
significant, p-value > 0.05, * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001, **** p-value < 0.0001). The exact p-values were displayed in the
Source Data. Box plots: center line, median; boxes, first and third quartiles of the distribution; whiskers, highest and lowest data points within 1.5 x IQR.
The same statistical analysis was performed for Extended Data Fig. 5a-d. b, Entropy measurement of each lineage in MCDA using the SLICE method.

The color represents the stage (epithelial: n=13,642 cells, neuron: n=3,638 cells, immune: n=15,719 cells, muscle n=2,592 cells, stromal: n=_8,541
cells, endothelial: n=4,528 cells, other: n=2,626 cells, erythroid: n = cells, proliferating: n=3,442 cells, secretory: n=2,892 cells, germline: n=5,480
cells). ¢, Entropy measurement of cells in MCDA using the StemID method (n=60,065 cells). The color represents the stage. d, Entropy measurement of
each lineage in MCDA using the StemID method. The color represents the stage (epithelial: n=13,642 cells, neuron: n= 3,638 cells, immune: n=15,719
cells, muscle n=2,592 cells, stromal: n=_8,541 cells, endothelial: n=4,528 cells, other: n=2,626 cells, erythroid: n = cells, proliferating: n=3,442 cells,
secretory: n=2,892 cells, germline: n=5,480 cells). e, Boxplots displaying the sensitivity, specificity, FPR (False Positive Rate), and PRAUC (Precision-
Recall Area Under Curve) of two methods with different inputs to detect tissue-specific TFs in MCDA (n=9 tissues per box). Methods represented are
running VIPER-DOROTHEA with pseudo cells (pseudo_VIPER-DOROTHEA) or single cells (single_VIPER-DOROTHEA), running SCENIC with pseudo
cells (pseudo_SCENIC) or single cells(single_SCENIC). The union of the two methods with single cells (single_union (ABC)) was the union of collection
ABC. And the intersection of the two methods with single cells (single_intersection (A)) is the collection A. Box plots: center line, median; boxes, first
and third quartiles of the distribution; point, tissues in MCDA. The results indicate SCENIC with single-cell datasets performs better in specificity and
PRAUC than VIPER-DOROTHEA. The union of two methods achieves over 75% sensitivity in identifying regulatory programs while the intersection of
two methods achieves the highest specificity. f, Heatmap of aggregated module activities of TFs clustered by fuzzy c-means showing variation by stage
and lineage from VIPER-DOROTHEA. g, Boxplot showing the module activity scores in module 14 (n=56 TFs) and module 15 (n=36 TFs) per lineage per
stage in SECNIC. Red lines mark the zero line. Colors from blue to yellow represent the 7 development stages from E10.5 to adult stage. Box plots: center
line, median; boxes, first and third quartiles of the distribution; whiskers, highest and lowest data points within 1.5 x IQR. h, Venn diagrams of the numbers
of overlapping genes between housekeeping TFs and commonly upregulated TFs (TFs in module 14, collection ABC) in MCDA. i, Heatmap showing
commonly upregulated TFs (TFs in module 14, collection ABC) with regard to expression levels in MCDA. The color displays the Spearman correlation
between aggregated TF expression levels in tissue-lineage against development stages (labeled as 1to 7 to represent E14.5 to adult). Red blocks indicate
the TFs display the upregulated expression patterns in the specific lineages of tissues.
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Extended Data Fig. 6 | Analysis of the developmental branch across species. a, Circos plot showing the subphyla, species, tissues/lineages, and
time points of the single-cell dataset used in the cross-species analysis. b-d, Radial network plot showing the inferred relationships among cell types

of invertebrates (b, H. vulgaris ¢, C. elegans d, S. mediterraneaia). Dot representing cell types, colored by lineage. e, Sankey plot showing the inferred
relationships among cell types in fetal and adult human lungs.
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Extended Data Fig. 7 | See next page for caption
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Extended Data Fig. 7 | Cross-species analysis of commonly upregulated and downregulated genes. a, b, Entropy measurement of each lineage

in H. sapiens (a) and D. rerio (b) using the CCAT methods (H. sapiens: immune, n= 26,976 cells, stromal, n=11,278 cells, muscle, n=5,450 cells, epithelial,
n=20,347 cells, erythroid, n=1,897 cells, neuron, n=4,659 cells, endothelial n=7,475 cells, proliferating, n=3,421 cells, secretory, n=3,708 cells;

D. rerio: epithelial, n=36,243 cells, stromal, n=8,801 cells, erythroid, n=693 cells, others, n=3,454 cells, muscle, n=4,140, neuron: n = 10,363 cells,
immune: n=10,104 cells). The color represents the stage. P-values were from a two-sided Wilcoxon rank sum test comparing entropies of two different
development stages. Box plots: center line, median; boxes, first and third quartiles of the distribution; whiskers, highest and lowest data points within

1.5 x IQR. ¢, d, Venn plots showing the downregulated (¢) and upregulated (d) genes in 7 species (homologous genes of humans, p-adj < 0.1). e, Bar plot
showing the numbers of conserved upregulated and conserved downregulated genes per species, which were homologous genes of humans. f, Boxplots
showing the number of log10 protein-protein interactions of commonly upregulated genes (at least 3 species, n=59), commonly downregulated genes
(at least 3 species, n=524), other conserved genes (at least 3 species and homologous to human genes, n=12,543), and other genes (n=17,839).
P-values were from a twosided Wilcoxon rank sum test comparing log10 PPl numbers of two different gene types. Box plots: center line, median; boxes,
first and third quartiles of the distribution; whiskers, highest and lowest data points within 1.5 x IQR. g, Bar plot showing the gene composition of
conserved upregulated genes (at least 3 species, n=59 genes), conserved downregulated genes (at least 3 species, n=524 genes), other conserved genes
(in at least 3 species and homologous to human genes, n=12,543 genes), and other genes (n=17,839 genes). Gene categories were colored by mean
values of log10 PPl number (blue: less PPIs, red: more PPIs). h, i, Bubble plot showing the GO terms of commonly downregulated (h) and upregulated

(i) genes. The bubble color indicates the value representing the proportion of selected GO term in the EBI GOA database for the human. Higher value
implies more general terms, lower implies more specific ones. The bubble size indicates the frequency of the GO term in the underlying GOA database.
Hypergeometric test was performed to identify significant go terms and benjamini-hochberg correction was used to adjust p-values. j, Heatmap showing
the cell type frequencies of commonly upregulated genes in 7 species.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Lineage-specific regulators among different species. a, Network plot showing the reliable and biologically plausible

matches of lineages from 7 species using Metaneighbor and SAMap (sm: S. mediterranea, ce: C. elegans, hy: H. vulgaris, ci: C. intestinalis, ze: D. rerio, mo:
Mus M. musculus, hu: H. sapiens, the abbreviations are the same in Extended Data Fig. 8). b, UMAP showing the combination projection of seven species
based on pseudo-bulk cells, colored by species. ¢, UMAP showing the combination projection based on pseudo-bulk cells, colored by meta-lineages.

d-j, Heatmaps showing the sequence similarities (log values) of development-related lineage-specific TFs within the meta-lineage across species: stromal
(d), endothelial (e), muscle (f), stem/germline (g), neural (h), immune (i), and epithelial (j).
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Extended Data Fig. 9 | scRNA-seq revealed the changes in Xbp1/- embryos. a, Western blot for the knockout experiment. The molecular weight markers
were labeled. The experiment was replicated three times with similar results. b, A igv view of mapped reads in the XbpT gene in the sequencing data of the
WT and KO embryos. The left one shows the entire XbpT gene. The right one shows the marked red region which is the exon1 and exon2 region of Xbp1.
The exon2 region shows no read coverage, which indicates that the exon2 (97 bp) has been completely disrupted in KO embryos. The blue lines link the
different parts of reads that, by definition, map on several exons. The left and right genome browser tracks share the same y axis. €, XbpT/- embryos at
E12.5. The arrows represent dead embryos. d, Scatter plot showing the cell composition proportions of differential cell types between KO and WT embryos
on E12.5 (WT: n=4, KO: n=5, FDR < 0.01). e-f, Entropy measurement of each cluster in Fig. 6b using the StemID (e, n=93,246 cells) and SLICE

(f, n=93,246 cells) methods. They share the same text in the x coordinates. P-values are from a two-sided Wilcoxon rank sum test comparing entropies of
two different groups from each cluster (ns: not significant, p-value > 0.05, * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001, **** p-value < 0.0007).

The exact p values were displayed in the Source Data. Box plots: center line, median; boxes, first and third quartiles of the distribution; whiskers, highest
and lowest data points within 1.5 X IQR.
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Extended Data Fig. 10 | High-resolution MS revealed the protein changes in Xbp1/- embryos. a, Heatmap illustrating the proteins that were differentially
expressed in Xbp1~~ embryos and wild-type embryos (the colors represent the z-scores of the protein expression). A two-sided t-test is performed for
comparing protein levels of KO embryos to WT embryos (p-value <0.05, fold change >1.5). b, Volcano plot showing the differentially expressed proteins
in XbpT~/~ embryos and WT embryos. The lines mark thresholds for log values of the p-value and fold change. The dots of text annotations are genes that
are canonical Xbp]1 targets related to the unfolded protein response (UPR). The yellow and blue dots are genes with significantly upregulated genes in

KO embryos and WT embryos respectively. ¢, mESCs and XbpT~ mESCs grown in mESCs medium for 3 days and showing no visible differences in cell
morphology. The experiment was replicated three times with similar results. Scale bar, 50 pm. d, gPCR analysis of Nanog, Oct4, and Sox2 expression in
mESCs and Xbp1~~ mESCs showing no significant differences (normalized by the expression level of Gapdh, n=3 per box). A two-sided Wilcoxon rank
sum test is performed for comparing gene expression levels of wild-type and knockout mESCs (p-value > 0.05: not significant, mean+s.d.).
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Software and code

Policy information about availability of computer code

Data collection  No software was used for data collection.

Data analysis Reads from single cell datasets were aligned to the Mus_musculus.GRCm38.88 using STAR 2.5.2a and the DGE data matrices were obtained
using the Dropseq Core Computational Protocol (available at http://mccarrolllab.org/dropseq/) with default parameters. Downstream
standard procedures for filtering, variable gene selection, dimensionality reduction and clustering were performed using the Seurat 3.2.2 in
R3.6.3. Scanpy 1.6.0 was used for single cell gene expression analysis, such as clustering analysis and lineage trajectory analysis. bbknn 1.4.0
was applied to removed batch effects in the kidney tissues. pvca (v1.26.0) was employed to evaluate the variance of MCDA. pySCENIC 0.10.0
(available at https://github.com/aertslab/pySCENIC) and VIPER-DOROTHEA (viper 1.28.0 and dorothea 1.6.0) were used to infer gene
regulatory networks. Cytoscape 3.5.0 was used for network visualization. Orthofinder 2.2.6 was used to infer orthologs. SLICE 0.99.0, RacelD
0.2.2 (StemlID), SCENT 1.0.2 (CCAT), and CytoTRACE 0.3.3 were used for single cell entropy analysis. VarlD, as a part of RacelD 0.2.2, was used
for differentially variable genes detection. ClusterProfiler 3.14.3 was used for Gene Ontology biological pathway enrichment analysis and
REVIGO (http://revigo.irb.hr/, latest updated on November 16, 2021) was used for visualization. SAMap 0.3.0 and MetaNeighbor (pyMN 0.1.0)
were used to infer lineage relationships across species. Differential expressed genes between cell type pairs across species were calculated
using FindMarkers function in Seurat 4.0.1. Speckle 0.0.1 (propeller) was used for Cell type composition analysis. scMerge 1.2.0 was used to
evaluate stably expressed gene sets in MCDA. MaxQuant search engine (v.1.5.2.8) was used for the Analysis of global proteomics data and the
reference was Mus_musculus_10090 database. ChromVAR 1.12.0 was used to calculate the accessibility of the Xbp1 motif in scATAC-seq
datasets. R package ggpubr 0.4.0 was used to determine the statistical significance of the differences between two groups. Detailed codes for
figures are provided in github (https://github.com/ggjlab/MCDA).
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- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The data generated in this study can be downloaded from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEQ) under
accession numbers GSE176063 and GSE178217. The raw and processed files of MCDA were in GSE176063 The raw and processed files of wild-type and Xbp1
knockout embryos were in GSE178217. Processed count matrices and cell annotations were provided on the figshare website (https://figshare.com/
s/340e8e7f349559f61ef6/), including the development stage, tissue-of-origin, lineage information, cell-type annotations. We provided separate datasets for each
tissue and the merged datasets for the MCDA. We also provide an interactive website (http://bis.zju.edu.cn/MCA/) to enable public access to the data. The
following publicly available datasets were used in the study: Mus_musculus. GRCm38.88 genome, Mus_musculus_10090 database, AnimalTFDB 3.0 database,
STRING database (v11), eggNOG database (v5.0), Ensembl v96; the Schmidtea mediterranea dataset generated by Plass et al. (GSE103633), the Caenorhabditis
elegan dataset generated by Packer et al. (GSE126954.); the Ciona intestinalis dataset generated by Cao et al, (GSE131155); the Hydra vulgaris dataset generated by
Siebert et al. (GSE121617); the Danio rerio dataset generated by Li et al. (GSE178151); the Homo sapiens dataset generated by Han et al. (GSE134355), and part of
Mus musculus dataset (E14.5 and adult) generated by Han et al. (GSE108097 and GSE134355). The mouse scATAC-seq dataset generated by Cusanovich et al
(https://atlas.gs.washington.edu/mouse-atac/data/) and Di Bella et al. (GSE153164), and the human scATAC-seq dataset generated by Domcke et al.
(descartes.brotmanbaty.org).
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Sample size No statistical methods used to predetermine sample size. 520,801 single cells were analyzed in total for a time-series mouse cell
differentiation atlas construction. A total of 52 mouse tissues from different development stages were analyzed. In our previous study (Han et
al., Nature, 2020), we estimate that the major cell-type discovery in representative tissues are near plateau at around 8000 cells. Therefore
we collected more than 10000 cells per tissue on average. That makes a total of 520,801 single cells. For wild-type and knockout embryos, we
collected more than 40,000 cells respectively with more than 3 experimental replicates per genotype for single-cell experiment. 3
experimental replicates per genotype were used for mass spectrometry proteomic analysis and mESC related experiments.

Data exclusions  Data points with fewer than 500 UMI were excluded. The detected transcript from a single live mammalian cell under our sequencing depth
(3000 reads/cell) should be more than 500 UMI, as we have exemplified in our previous Mouse Cell Atlas paper (Han et al., Cell, 2018). Cell
barcodes with less than 500 UMI usually correspond to empty beads exposed to free RNA during cell lysis, RNA capture and washing steps.

Replication 2-4 replications were done for different tissues when samples were available. The results of major cell type clusters are reproducible.

Randomization  Experimental mice and embryos were randomized before sample preparation. Different single cells were randomly captured before analysis.

Blinding For all experiments, investigators were blinded to group allocation during the data collection and analysis.
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Antibodies used anti-ESAM (MA5-24072; Thermo);
https://www.thermofisher.cn/cn/zh/antibody/product/ESAM-Antibody-clone-340236-Monoclonal/MA5-24072
anti-Myl9 (ab187152; Abcam);
https://www.abcam.com/myl9-antibody-epr130132b-ab187152.html
anti-Scgblal (MAB4218-SP; R&D);
https://www.rndsystems.com/cn/products/human-uteroglobin-scgblal-antibody-394324 _mab4218
anti-tff2 (13681-1-AP; ProteinTech);
https://www.ptglab.com/products/TFF2-Antibody-13681-1-AP.htm
anti-AFP (AF5134; Affinity));
http://www.affbiotech.com/goods-4441-AF5134-AFP_Antibody.html
anti-Xbp1 (ab37152; Abcam);
https://www.abcam.com/xbpl-antibody-ab37152.html
anti-B-tubulin ( EM0103; HUABIO);
https://www.huabio.com/products/beta-tubulin-antibody-clone-1-b11-monoclonal-em0103
anti-mouse 1gG (HS201-01; TransGen Biotech);
https://www.transgenbiotech.com/secondary_antibody/proteinfind_goat_anti_mouse_igg_h_| _hrp_conjugate.html
anti-rabbit IgG (GAR007; MultiSciences);
http://www.liankebio.com/product-736524.html
Donkey anti-Rat 1gG (H+L) Highly Cross-Adsorbed, Alexa Fluor 488 (A-21208; Thermo) ;
https://www.thermofisher.cn/cn/zh/antibody/product/Donkey-anti-Rat-IgG-H-L-Highly-Cross-Adsorbed-Secondary-Antibody-
Polyclonal/A-21208
Goat anti-Rabbit 1gG (H+L) Highly Cross-Adsorbed, Alexa Fluor 594 (A-11037; Thermo) ;
https://www.thermofisher.cn/cn/zh/antibody/product/Goat-anti-Rabbit-IgG-H-L-Highly-Cross-Adsorbed-Secondary-Antibody-
Polyclonal/A-11037
Donkey anti-Rabbit IgG (H+L) Highly Cross-Adsorbed, Alexa Fluor 488 (A-21206; Thermo);
https://www.thermofisher.cn/cn/zh/antibody/product/Donkey-anti-Rabbit-1gG-H-L-Highly-Cross-Adsorbed-Secondary-Antibody-
Polyclonal/A-21206

Validation Validation are available for all antibodies from the manufacturer. Please refer to references contained in the provided links.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) mESC is from George Q. Daley Lab. RRID: CVCL_C320.
Authentication The mESC cell line is authenticated by morphology, karyotyping, and immunostaining with Sox2/Nanog/Oct4.
Mycoplasma contamination The cell line is negative for mycoplasma contamination.

Commonly misidentified lines  no commonly misidentified cell lines were used.
(See ICLAC register)

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Wild-type C57BL/6J mice were ordered from Shanghai SLAC Laboratory Animal. Xbp1 knockout mice were generated by Nanjing
Gempharmatech. Seven development stages of mice (E10.5, E12.5, E14.5, PO, P10, P21 and 6-10weeks ) were used for single-cell
experiments. Testes were collected from male mice and all the other tissues were collected from female mice. For E10.5 and E12.5
samples, both female and male embryos were used. Wild-type Danio rerio strain AB was raised and maintained in standard zebrafish
units at Core Facilities, Zhejiang University School of Medicine. Two development stages (24hpf and 3 month) were used for single-
cell experiments. Both female and male strains were contained.

Wild animals The study did not involve wild animals.




Field-collected samples  All mice were housed at Zhejiang University Laboratory Animal Center in a Specific Pathogen Free (SPF) facility with individually
ventilated cages. The room has controlled temperature (20-22°C), humidity (30%—70%) and light (12 hour light-dark cycle). Mice
were provided ad libitum access to a regular rodent chow diet. No no field-collected samples were used in the study.

Ethics oversight All experiments performed in this study were approved by the Animal Ethics Committee of Zhejiang University. All experiments
conformed to the relevant regulatory standards at Zhejiang University Laboratory Animal Center.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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