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snRNA-seq of long-preserved 
FFPE samples from colorectal liver 
metastasis lesions with diverse 
prognoses
Hongyu Chen1,2,7, Xiang Zhang3,4,7, Qing Cheng2, Xiner Shen2, Linghui Zeng1, 
Yongcheng Wang   5,6, Longjiang Fan2 & Weiqin Jiang3 ✉

Differences in prognostic outcomes are prevalent in patients with colorectal cancer liver metastases. 
Comparative analysis of tissue samples, particularly applying single-cell transcriptome sequencing 
technology, can provide a deeper understanding of potential impacting factors. However, long-
term monitoring for prognosis determination necessitates extended preservation of tissue samples 
using formalin-fixed and paraffin-embedded (FFPE) treatments, which can cause substantial RNA 
degradation, presenting challenges to single-cell or single-nucleus sequencing. In this study, employing 
snRandom-seq, a single-nucleus RNA sequencing (snRNA-seq) technology specifically for FFPE 
samples, we tested multiple lesion samples from 18 distinctive colorectal cancer liver metastasis 
cases with diverse prognostic outcomes that have been preserved for at least three years (mostly 
over five years). The process yielded expression data from 82,285 cells. The high-quality snRNA-seq 
data demonstrate the feasibility of single-nucleus sequencing in long-term preserved FFPE samples, 
offering potential insights into the heterogeneity between different prognoses of colorectal cancer 
liver metastases, and the relationship between the heterogeneity within different lesions of the same 
patient and prognosis.

Background & Summary
Colorectal cancer, being the third most common type of malignant tumor globally, and the second leading 
cause of cancer-related deaths worldwide, has always attracted widespread attention in the medical and scientific 
research fields. However, when it spreads to the liver, the survival rate of most patients worldwide significantly 
decreases, while the quality of life is devastatingly impacted, including distressing symptoms, ongoing physical 
and mental stress, as well as high financial burden1,2. It is perplexing for clinicians and researchers that although 
all patients with colorectal cancer face the same challenge, there is a vast variability in their clinical prognosis. 
The factors involve a series of variables such as age, gender, lifestyle, stage of the disease, the patient’s own health 
status, the origin of the disease, the biological characteristics of the tumor, and the patient’s treatment methods 
and resistance to disease, among other variables3. At the same time, some past and present research conclusions 
make us believe that tumor heterogeneity may be the key element that determines the variability in prognosis4. 
Tumor heterogeneity refers to the differences in cell behavior and characteristics at various locations in the 
same individual over time and space, including differences in gene expression, metabolic activity, cell vitality 
and proliferation rate, migration ability, and sensitivity to drugs and other treatment measures5,6. Thorough 
research into the relationship between the biological properties of colorectal cancer complicated by liver metas-
tasis, tumor heterogeneity and patient prognosis will undoubtedly unveil new knowledge domains, and hold 
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significant scientific and clinical value for optimizing treatment strategies, improving the quality of care, and 
enhancing patient prognosis7.

In light of this high degree of complexity, researchers need a deep understanding and mastery of its impact 
on patient prognosis and the relevant mechanisms. Traditional methods such as batch-based FISH and bulk 
RNA-seq can no longer meet our research needs for the heterogeneity of complex diseases. With the advent and 
widespread application of single-cell transcriptome sequencing technology without specific mutation require-
ments, science has undoubtedly provided us with a unique and powerful research tool that can be used to study 
cell expression profiles in detail, and even find differences in gene expression within the same tumor8.However, 
when faced with the challenges of sampling, storage methods, and sample quality, we also need to design inno-
vative strategies and means to cope. Conventional clinical tissue samples are usually stored by formalin-fixed 
and paraffin-embedded (FFPE) for long-term preservation. However, this method may lead to RNA (includ-
ing mRNA) degradation, which limits its application in RNA sequencing (including single-cell transcriptome 
sequencing)9,10. When we consider using long-term preserved FFPE samples for research, even for several years, 
we need to overcome RNA degradation, RNADNA cross-linking issues, and conduct appropriate sample prepa-
ration and post processing11.

In this study, we have collected 18 FFPE patient samples from different liver metastasis lesions, which have 
been preserved for at least three years, employing strict inclusion criteria. The criteria details are referred to 
in the Methods section, and the detailed patient information is available in Table 1. Multiple tumor samples 
from the same patient were obtained from different lesions. Among these samples, two patients (GP1; GP2) 
demonstrated a favorable prognosis, with a total of 8 samples collected, and their overall survival exceeded 
five years. In contrast, three patients (PP1; PP2; PP3) exhibited a poor prognosis, with a total of 10 samples, 
and their survival duration did not surpass three months. This stark contrast in survival times underscores the 
significant differences in disease progression and outcomes associated with these patient groups. We performed 
single-nucleus transcriptome sequencing combining with our previously developed snRandom-seq technol-
ogy suitable for FFPE samples12. The snRandom-seq can capture total RNAs with random primers (Fig. 1A). 
Although long-term storage of FFPE samples results in severe degradation, leading to reduced RNA quality and 
fragmentation, rendering them unsuitable for transcriptome sequencing13, the median number of genes in each 
sample, except for sample PP1_1, still exceeds 200, with a peak value reaching nearly 800. The count median is 
around 500. Additionally, the mitochondrial proportion in samples, with a few exceptions, remains relatively 
low (Fig. 1B). Further annotation analysis based on the marker genes included in the PanglaoDB database14 
reveals that, aside from the PP1_1 sample, the remaining samples cover the major cell types of liver tissue, 
with Hepatocytes and T cells being the predominant cell types (Fig. 1C). snRandom-seq technology provides 
more applications of single-nucleus transcriptome sequencing on FFPE samples, even for samples with longer 
preservation periods. More importantly, the data by this study provide an in-depth and more accurate basis 
for research on colorectal cancer with liver metastasis, potentially suggesting innovative strategies to enhance 
patient prognosis.

Methods
Sample selection and sampling.  The samples for this study are derived from colorectal cancer patients 
with liver metastasis, who underwent surgery at the First Affiliated Hospital of Zhejiang University between 2016 
and 2021. All materials collected were FFPE samples. This study has received approval from the Clinical Research 
Ethics Committee of the First Affiliated Hospital of Zhejiang University School of Medicine (No. IIT20220893A). 
Considering the retrospective nature of the study, the requirement for informed consent has been waived. This 
exemption, granted by the committee, acknowledges that the risk associated with data collection is minimal and 
strictly limited to previously collected medical samples. The ethics committee also approved the release of the 
data for publication. Sample selection and sampling is orchestrated predicated on several thoughtful principles. 
Initially, patients harboring unresectable metastases (meaning the number of metastatic lesions is greater than 5) 
are subjected to transformative treatment. If the transformative treatment proves successful, surgical interven-
tions are planned. It is an obligatory requirement that all lesions get surgically cleared. Subsequently, patients are 
classified based upon their recurrence pattern and survival period after surgery. This involves segregating patients 
who suffered short-term recurrence (within one year) and consequently short survival time, from those who did 
not have an immediate recurrence (greater than three years) and hence demonstrate a longer survival time.

Single nucleus isolation and library preparation.  Undergoing detailed preparation for single nucleus 
isolation and subsequent snRandom-seq library preparation, the surgical samples were scrupulously managed. 
Initially, five 20 μm sections were incised from each paraffin-embedded surgical sample. To expel paraffin, the 
samples underwent room temperature xylene washes, usually twice, for a span of five minutes each.

PatientID Prognosis Mutation Site Cancer Duration of sample storage Sample number

Patient1(GP1) Good Widetype mLiver CRC 6 yr 4

Patient2(GP2) Good KRAS G13D mLiver CRC 7 yr 4

Patient3(PP1) Poor KRAS Q61P mLiver CRC 3 yr 4

Patient4(PP2) Poor BRAF V601E mLiver CRC 6 yr 4

Patient5(PP3) Poor NA mLiver CRC 4 yr 2

Table 1.  Detailed information of each sample.
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Post paraffin removal, the samples were mildly desiccated using a graded ethanol series, titrated from com-
plete purity to 30%. Subsequently, a pair of washes were administered with a precooled wash buffer, incorpo-
rating 125 µm glycine and 2 mM MgSO4 in 3X SSC buffer. Followed by this, the homogenization process was 
undertaken on an ice-bathed Dounce homogenizer. This step was individualized per sample type, incorporating 
select lysis buffers and lysis times as necessitated. The homogenizer was then rinsed with a milliliter of lysis 
buffer. The next move involved the addition of 100 µL protease K (concentration of 10 mg/mL) to the lysis buffer, 
with a subsequent 5-minute incubation period at 37 °C. The released nuclei were sieved through a stringent 
20 µm cell strainer followed by a duo of wash buffer cleansing. The nuclear samples were then parceled equally, 
DAPI- (4′,6-diamidino-2-phenylindole) stained, then loaded onto a blood cell counter for inspection under an 
inverted fluorescence microscope. The critical sequence of snRandom-seq library preparation came next. Single 
nuclei that qualified were processed in line with the meticulous snRandom-seq protocol illustrated in the prior 
study by Xu12. This comprehensive protocol, inclusive of the nuances like the volumes of lysis buffer, details on 
permeabilization buffer, and the exacting reaction system and programme, is expanded in the supplementary 
data of the precedent publication.

Preprocessing of snRandom-seq data.  Primarily, raw sequencing data underwent a process to trim off 
primer sequences and extra nucleotides that were the byproduct of the dA-tailing phase. Following this, for every 
Read1 instance, an extraction of the UMI (8 nt) and cell-specific barcode (30 nt) was performed, proceeding to 
merge the organized barcodes. These were then uniquely allotted to the identical acceptor barcode, adhering to a 
Hamming distance not exceeding 2 nt. Read2 was translated into a gene expression matrix utilizing the STARsolo 

Fig. 1  Study design and single nuclei RNA profiling from metastatic colorectal cancer FFPE samples. 
(A) Diagrammatic illustration of the overall study design. (B) Violin plots illustrate the distribution of feature 
counts and the proportion of mitochondrial reads for each sample. (C) UMAP plots present the clustering and 
annotation results for each sample.
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module nested within STAR (2.7.10a)15, with appropriate parameters (key parameters include:--soloType 
CB_UMI_Simple --soloCBwhitelist None --soloCBstart 1 --soloCBlen 15 --soloUMIstart 16 --soloUMIlen 8 
--outSAMtype BAM SortedByCoordinate --outMultimapperOrder Random --runRNGseed 1 --outSAMattributes 
NH HI AS nM CB UB GX GN --soloFeatures Gene GeneFull --soloUMIdedup Exact --outSAMunmapped Within 
--soloStrand Reverse). To elucidate the count of nuclei per sample, a scatterplot of log10(genes) was plotted against 
each plausible barcode. Here, the minimum peak value of the maximum log10(genes) was adopted as the threshold. 
Consequently, for downstream analysis, only those barcodes surpassing this gene count threshold were selected. 
The reference genome used in this study was the human genome version hg38. The genome file was downloaded 
from the following link: https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_43/GRCh38.pri-
mary_assembly.genome.fa.gz. The corresponding genome annotation file was also obtained from: https://ftp.ebi.
ac.uk/pub/databases/gencode/Gencode_human/release_43/gencode.v43.primary_assembly.annotation.gtf.gz.

Clustering and cell annotation.  In the investigation of single-nucleus RNA sequencing (snRNA-seq) data, 
the Seurat v4 toolkit was pivotal for analysis and visual representation16. The process entailed preprocessing, 
amalgamation, display, congregation, cell type recognition, and detection of differential expression. The study 
excluded nuclei with gene representation of less than 100 and genes observed in fewer than 3 nuclei. Whether 
conducting clustering analysis on individual samples or integrating snRNA-seq datasets, the Seurat toolkit was 
utilized for data preprocessing. Subsequently, the Liger method17, employing non-negative matrix factorization 
(NMF), was introduced to perform dimensionality reduction on the high-dimensional transcriptome expres-
sion matrix. The clustering analysis was then based on this dimensionality reduction result. In detial, Seurat’s 
embedded functions like NormalizeData, FindVariableFeatures, and ScaleData were executed in succession for 
preprocessing of the data. Consequently, Liger was applied for integration, using RunOptimizeALS (key param-
eters include: k = 20, lambda = 5, split.by = “orig.ident”) for dimensionality reduction and RunQuantileNorm 
(key parameters include: split.by = “orig.ident”) functions to ensure comprehensive integration. Subsequently, 
clustering analysis was conducted based on the principal components computed through Liger. This process was 
chiefly executed by the functions FindNeighbors (key parameters include: reduction = “iNMF”, dims = 1:20) and 
FindClusters (key parameters resolution = 0.3). Clustering outcomes were graphically represented using uniform 
manifold approximation and projection (UMAP), a feature embedded in Seurat. Stereotypical markers were used 
to discern the cellular identity of each cluster, manually determined using established marker gene lists. The 
detection of primary marker genes was accomplished utilizing the Seurat function ‘FindAllMarkers’, enforced 
with filtering parameters (only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25) to assure uniformity across 
the study. Furthermore, for the annotated clusters of cell types identified, we utilized marker genes provided in 
the Panglaodb database14 and manually defined their cell types through the FeaturePlot function. To validate the 
accuracy of the identified marker genes, we utilized COMETSC18 to construct two-marker gene panels, with all 
parameters set to their default values. More detailed code has been uploaded to the GitHub repository, and the 
link can be found in the ‘Code availability’ section.

Identification of lncRNA-mRNA pairs.  The LncPairs algorithm19 was used to identify the lncRNA(long 
non-coding RNA)-mRNA pairs utilized. It began by constructing a gene×cluster expression matrix that revolved 
around the top 2,000 variations within the gene-based single-cell expression matrix, subsequently averaging the 
expression of each gene by clusters. This gene×cluster expression matrix was later divided into two separate 

Sample 
number Type

Sequencing 
volume(G)

Raw 
reads(M)

True 
BC1(%)

True 
BC2(%)

True 
BC3(%)

Valid 
barcode(%)

Reads to 
align(%)

Reads to 
align(M)

Estimated 
number of 
cells

Median 
reads per 
cell

Median 
UMI per 
cell

Median 
gene per 
cell

GP1_1 Tumor 68 226.6 95.5 93.1 91.3 90.1 60.2 136.5 4114 1908 468 331

GP1_2 Tumor 73.2 244 96.9 94.9 93.3 92.5 84.4 205.9 5117 2713 664 414

GP1_3 Tumor 70.6 235.5 96.3 93.9 92 91.1 65.5 154.3 3001 1625 551 369

GP1_4 Tumor 60.4 201.2 95.9 93 90.7 89.8 75.2 151.4 5307 609 314 217

GP2_1 Tumor 67 223.5 96.3 94 92.2 91.2 78.9 176.3 7563 1360 834 555

GP2_2 Tumor 69.3 231 97.4 95.2 93.4 92.2 82.5 190.5 2955 7416 997 602

GP2_3 Tumor 70 233.2 97.6 95.7 94 93.2 83.7 195.1 5367 1643 628 356

GP2_4 Normal 81.1 270.3 97.6 93.8 93.8 93 82.5 222.9 3888 4036 798 461

PP1_1 Tumor 73.6 245.4 95.7 93.2 91.3 90.3 22.6 55.3 1828 652 215 169

PP1_2 Tumor 72 240 96 93.7 91.9 90.7 51.5 123.6 3614 1331 416 313

PP1_3 Tumor 75.2 250.7 95.6 93.2 91.2 90.3 40.1 100.6 3780 1349 431 308

PP1_4 Normal 82 273.3 95.8 93.5 91.7 90.4 64.3 175.9 5501 2458 784 514

PP2_1 Tumor 80.3 267.6 97.6 93.6 93.6 93.6 78.9 211.3 4374 2566 391 265

PP2_2 Tumor 70.7 235.5 97.4 93.3 93.3 92.4 80.6 189.8 2862 2020 378 251

PP2_3 Tumor 72.4 241.5 97.5 93.4 93.4 92.6 83.4 201.4 2772 2517 532 329

PP2_4 Normal 59.7 199 97.1 94.4 91.6 90.7 87.9 174.9 2937 1087 466 276

PP3_1 Tumor 124.1 413.7 95.1 92.2 88.9 88.1 86.2 356.8 9626 2650 655 515

PP3_2 Tumor 129.2 430.8 92.8 90.5 88.8 88 85 266.2 14377 2576 1192 792

Table 2.  Statistics of scRNA-seq dataset used in this study.
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ones—namely, mRNAcluster and lncRNAcluster. An important part was to calculate the correlation between 
these two matrices, with lncRNA-mRNA pairs exhibiting a Pearson Correlation Coefficient (PCC) of more than 
0.85 being given particular importance. The remaining lncRNA-mRNA pairs were then used in building the 
paircluster matrix. The identification of cluster-specific lncRNA-mRNA pairs followed, done through the Cosine 
similarity approach. Finally, pairs that scored below 0.95 in similarity were removed from the dataset.

CNV analysis.  Hepatocyte subgroup data was extracted from single-cell transcriptome data to analyze copy 
number variations (CNVs), with cells from normal samples serving as controls. Utilizing CopyKAT V1.1.020, a 
Bayesian segmentation approach, each cell was categorized as normal or tumor based on the genome-wide copy 
number profiles generated from the gene expression Uniquely Mappable Identifier (UMI) matrix. Aneuploid cells 
that displayed genome-wide copy number aberrations were identified as cancerous, whereas diploid cells were 
classified as normal cells.

Enrichment analysis.  Every gene identified as exhibiting differential expression, even those enriched within 
particular clusters, proceeded to pathway enrichment analysis, facilitated by the clusterProfiler21. Biological pro-
cesses were annotated to those pathways, which demonstrated substantial statistical significance.

Fig. 2  Stacked bar chart illustrating the cell types and corresponding numbers of genes involved in each sample. 
Each color represents one sample.

https://doi.org/10.1038/s41597-024-04323-8
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Data Records
The scRNA-seq data used in this study are accessible through the CNGB Sequence Archive (CNSA) of the China 
National GeneBank DataBase (CNGBdb) under the BioProject accession PRJCA026536 and are available under 
the GSA-human Data Usage Agreement22. Users can request access through the CNSA platform by adhering to 
the controlled access guidelines and completing the GSA-Human Data Access Agreement. The specific access 
link is https://ngdc.cncb.ac.cn/gsa-human/browse/HRA007565. The final gene expression profiling for each 
sample had been deposited in FigShare https://doi.org/10.6084/m9.figshare.2592874323.

Technical Validation
Quality assessment of sequencing data.  Through an analysis of key sequencing metrics, such as true 
BC1(%), true BC2(%), valid barcode(%), reads to align(%), median reads, UMI, and genes per cell, we uncovered 
the inherent complexity and defining characteristics of the dataset. This evaluation covered 18 samples from both 
tumor and normal tissues (Table 2), providing a robust foundation for further biological interpretation. Initially, 
we noted a range of sequencing volumes, from 59.7 G to 129.2 G, with the sample PP3_2 featuring the highest 
sequencing volume at 129.2 G. The raw reads varied between 199 M and 430.8 M. Additionally, in terms of the 
proportions of real barcodes, we found that the percentages of the three barcodes (True BC1, BC2, BC3) fell 
within the ranges of 92.8%–97.6%, 90.5%–95.7%, and 88.8%–94% respectively. Moreover, the percentage of valid 
barcodes ranged from 88% to 93.6%. When considering the alignment of reads, the majority of samples exhibited 
consistently high proportions (Reads to align) and quantities (Reads to align in million). Most proportion values 
were around 80%, with the highest alignment quantity reaching 356.8 M. However, sample PP1_1 showed lower 
proportions (approximately 22.6%) and quantities (around 55.3 M), which we believe may be attributed to the 
quality of the sample from Patient3. Furthermore, the estimated number of cells ranged from 1828 to 14377, 
with median reads per single cell ranging from 609 to 7416, median UMI ranging from 314 to 1192, and median 
gene count extending from 169 to 792. Furthermore, the comprehensive analysis revealed the identification of 
approximately 18,000 protein-coding genes in each sample, alongside the detection of various non-coding genes 
such as lncRNA, miRNA, snRNA, snoRNA, and scaRNA. Among these, lncRNA were found to be the most abun-
dant. While there were some discrepancies in the detection quantities across the samples, the majority showed 

Fig. 3  Identification of cell types and tumor cells. (A) UMAP plot displays the integrated results of all samples, 
with all cells categorized into seven major cell types. (B) UMAP plot for the specific expression of three marker 
genes in different cell types. (C) The proportion of each major cell type across 18 samples, accompanied by the 
clinical characteristics of each sample as shown. (D) UMAP visualization of the CNV-predicted results, where 
aneuploid denotes tumor cells, and diploid indicates normal cells. The heatmap of the CNV variations on 
chromosomes 1–22 and X. Red represents gain, while blue denotes loss.
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quantities exceeding 10,000, with a peak reaching 15,000, except for samples PP1_1 and PP2_4 (Fig. 2). These 
indicators effectively demonstrate the depth and accuracy of our sequencing data.

Sample integration and cell type annotation.  Subsequently, after data integration, we generated a 
snRNA-seq dataset comprising 82,285 cells. We reannotated these cells into seven major cell types, representing 
the predominant cell types in liver tissue, with hepatocytes and T cells being the most abundant, totaling 22,008 

Fig. 4  Identification of cell type marker genes. (A) The heatmap illustrates the expression of the identified cell 
type-specific mRNA (left) and lncRNA (right) across different cell types. (B) UMAP plot demonstrates the 
identification of various cell types using two marker gene panels. (C) A heatmap is utilized to visually compare 
and contrast the cell-specific lncRNA-mRNA pairs across diverse cell types, with specific notation of the three 
most prominent lncRNA-mRNA pairs.

https://doi.org/10.1038/s41597-024-04323-8
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and 38,701 cells, respectively (Fig. 3A). Specifically, our research has uncovered that Cholangiocytes show distinct 
expressivity in the KRT7, HNF1B, and CFTR genes; Stellate cells in the COL1A2, COL3A1, and SPARC genes; 
Endothelial cells in the VWF, CD93, and EMCN genes; Plasma cells in the PIM2, MZB1, and IGHG1 genes; 
Hepatocytes in the ALB, SERPINA6, and NR1I3 genes; T cells in the CD3E, IL7R, and LEF1 genes; and Kuppffer 
cells in the CD163, TIMD4, and VSIG4 genes (refer to Fig. 3B). Each sample contained all identified cell types, 

Fig. 5  Differences in cell type proportions and expression functions between tumor samples with different 
prognoses. (A) Bar graph illustrates the proportion of cell types in different sample groups. (B) Bhattacharyya 
distance demonstrates the differences in UMAP clustering among tumor samples with different prognoses. 
(C) Volcano plot illustrates the upregulated and downregulated genes in different cell types under the comparison 
of tumor samples with different prognoses, with the top five significantly different genes marked. (D) Dot plot 
displays the results of the GO functional enrichment of the differentially expressed genes across varying cell types.

https://doi.org/10.1038/s41597-024-04323-8
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though their proportions varied (Fig. 3C), demonstrating the experimental success and reliability of the dataset. 
Furthermore, through the CNV analysis, potential tumor cells can be effectively identified within the hepatocytes 
group. These cells exhibit significant segmental amplifications and deletions in their genome (Fig. 3D). These 
findings enhance our comprehension of gene expression patterns in specific cell types within liver tissue and 
underscore the potential of the snRandom-seq technique for identifying and distinguishing different cell types in 
long-term preserved, FFPE samples.

Identification of cell-type specific gene and lncRNA markers.  Identification of cell type-specific 
genes and lncRNA markers not only provides insights into cell function and changes under disease conditions, 
but also further confirms the reliability of the data. From the heatmap below, it is clear that each type of cell can be 
identified by its specific genes and lncRNA markers (Fig. 4A, specific lists can also be found in Table S1, S2). Some 
of the identified marker genes have been confirmed to correspond to specific cell types, such as PIM2, which is 
annotated as a gene for B/Plasma cells and also recognized as a marker gene. In the Panglaodb database, CUX2 
is also identified as a marker gene for hepatocytes, indicating the accuracy of the data. While the relationship 
between lncRNA markers and corresponding cell types has not been extensively studied, some lncRNAs have 
been implicated in colorectal cancer metastasis. For example, the LINC00261 marker for hepatocytes identified 
here is considered a aetastasis-related lncRNA prognostic signature for colorectal cancer24. To validate the accu-
racy of the identified marker genes, we constructed two-marker gene panels (Table S3). The UMAP plots clearly 
illustrate distinct expression patterns of these panels across different cell populations, confirming the precision 
of the marker gene identification (Fig. 4B). Furthermore, based on the identified markers, combined with the use 
of the lncPair algorithm, cell type-specific lncRNA and mRNA interaction pairs can be created (Fig. 4C). This 
not only allows for a deep understanding of how these markers interact to drive cell behavior, but also lays the 
groundwork for further detailed analysis.

Comparative analysis of tumor samples with different prognoses.  Moreover, we conducted a com-
parative analysis on tumor samples with different prognoses. Firstly, in the context of cellular type proportions, 
noticeable differences exist between different prognostic tumor samples and adjacent normal samples, among 
which T cells and Kupffer cells are the most significant. Tumor samples with poorer prognoses had a higher pro-
portion of T cells and a reduced proportion of Kupffer cells, while samples with better prognoses demonstrated 
the opposite trend (Fig. 5A). Secondly, we measured the difference in gene expression in different cell types based 
on the Bayesian distance of clustering results. Seven cell types exhibited varying degrees of difference, with B/
Plasma cells showing the most significant differentiation, meanwhile T cells and Kupffer cells, which showed evi-
dent proportion changes, also exhibited about 1.2 times of variation (Fig. 5B). To delve deeper into the differences 
in specific genes and functions, we conducted a differential gene analysis on each cell type and performed a Gene 
Ontology (GO) function enrichment analysis (Fig. 5C,D). Fascinatingly, in the differential genes, we found that 
the ZBTB16 gene was highly expressed in almost all cell types. ZBTB16 gene mainly participates in the cell cycle 
process and interacts with histone deacetylase, studies have indicated that it behaves as an oncogene and plays 
a role in stemness and cell proliferation in colorectal cancer, potentially linking it to prognosis25. From a func-
tional perspective, there was enrichment in aspects related to enzymatic activity regulation and binding, such as 
GTPase, peptidase, etc. By identifying and comparing the differences in tumor samples of different prognoses, the 
variability in cellular type proportions and functional changes related to differential prognosis can be unveiled.

Code availability
All software and scripts utilized in this research are publicly accessible, with detailed versions and parameters 
specified in the Methods section. Where specific parameters are not mentioned, default settings provided by the 
software developers were applied. The custom scripts used for generating the figures and analyzing the datasets 
have been uploaded to a GitHub repository, accessible via the following link: https://github.com/chenhongyubio/
LongPreservedFFPE.
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