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Single Nucleus Total RNA Sequencing of Formalin-Fixed
Paraffin-Embedded Gliomas

Ziye Xu, Lingchao Chen, Xin Lin, Yuexiao Lyu, Mofei Zhou, Haide Chen, Heng Zhang,
Tianyu Zhang, Yu Chen, Yuanzhen Suo,* Qian Liang,* Zhiyong Qin,*
and Yongcheng Wang*

Gliomas, the predominant form of brain cancer, comprise diverse malignant
subtypes with limited curative therapies available. The insufficient
understanding of their molecular diversity and evolutionary processes hinders
the advancement of new treatments. Technical complexities associated with
formalin-fixed paraffin-embedded (FFPE) clinical samples hinder
molecular-level analyses of gliomas. Current single-cell RNA sequencing
(scRNA-seq) platforms are inadequate for large-scale clinical applications. In
this study, automated snRandom-seq is developed, a high-throughput
single-nucleus total RNA sequencing platform optimized for archival FFPE
samples. This platform integrates automated single-nucleus isolation and
droplet barcoding systems with the random primer-based scRNA-seq
chemistry, accommodating a broad spectrum of sample types. The automated
snRandom-seq is applied to analyze 116 492 single nuclei from 17 FFPE
samples of various glioma subtypes, including rare clinical samples and
matched primary-recurrent glioblastomas (GBMs). The study provides
comprehensive insights into the molecular characteristics of gliomas at the
single-cell level. Abundant non-coding RNAs (ncRNAs) with distinct
expression profiles across different glioma clusters and uncovered promising
recurrence-related targets and pathways in primary-recurrent GBMs are
identified. These findings establish automated snRandom-seq as a robust tool
for scRNA-seq of FFPE samples, enabling exploration of molecular diversities
and tumor evolution. This platform holds significant implications for
large-scale integrative and retrospective clinical research.
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1. Introduction

Gliomas are the most common form
of brain cancer, originating in the glial
cells that support neurons. Approxi-
mately 30% of brain and central nervous
system tumors, and 80% of all malignant
brain tumors, are gliomas.[1] Glioblas-
toma (GBM) accounts for over half of
glioma cases.[2,3] GBM remains incur-
able, with the majority of patients expe-
riencing recurrence within a year.[3] Over
the past decades, there have been lim-
ited therapeutic options available for ma-
lignant gliomas. A main obstacle to de-
veloping new drugs for gliomas is the
lack of understanding of the molecular
diversity and evolution of these tumors.[4]

Exploring gliomas at the molecular
level is particularly challenging due to the
technical difficulties of analyzing clini-
cal samples, which are primarily obtained
and preserved as formalin-fixed paraffin-
embedded (FFPE) blocks.[5] While FFPE
samples allow for retrospective research
with large-scale samples spanning years
or even decades, formalin fixation intro-
duces chemical cross-linking and com-
promises RNA quality,[6] limiting the
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study of glioma transcriptional characteristics by single-cell
RNA sequencing.

Several emerging single-cell/nuclei RNA sequencing tech-
niques have been developed to address these challenges. How-
ever, oligo(dT)-based or probe-based techniques, such as 10X Ge-
nomics fixed RNA assay, snPATHO-seq,[7] and snFFPE-seq,[8] ex-
hibit limitations in sensitivity, transcriptome coverage, and biases
toward 3′-end or targeted genes. In our prior work, we devel-
oped a droplet- and random primer-based single-nucleus RNA
sequencing technique (snRandom-seq) for FFPE tissues.[9] Us-
ing this technique, single intact nuclei from FFPE tissues are
isolated through deparaffinization, rehydration, and nucleus ex-
traction under mild conditions. Total RNAs are captured using
random primers for subsequent reverse transcription and syn-
thesis of the second strand by poly(dA) tailing on the first strand
complementary DNAs (cDNAs). The cDNAs in a single nucleus
are specifically tagged by a microfluidic barcoding platform, fol-
lowed by amplification and sequencing. snRandom-seq demon-
strates much higher RNA coverage compared to state-of-the-art
high-throughput single-cell/nuclei RNA sequencing (sc/snRNA-
seq) techniques.[10,11] Additionally, snRandom-seq is capable of
detecting more non-coding RNAs and nascent RNAs.[9]

Despite its advantages, the manual operations involved in the
single nucleus isolation and droplet barcoding of snRandom-seq
hinder the throughput for large-scale sequencing of clinical sam-
ples. In this study, we address this limitation by automating the
procedures for single nucleus isolation and droplet barcoding.
We validate the performance of this automated archival single nu-
clei RNA sequencing platform using matched FFPE/frozen sam-
ple pairs and biological replicates. For the first time, we apply
this automated snRNA-seq technique to investigate the molec-
ular characteristics of archival FFPE glioma samples. Our study
encompasses 116 492 single nuclei from 17 archival FFPE glioma
samples, covering various types, grades, and matched primary
and recurrent gliomas, providing a comprehensive and retrospec-
tive analysis of the molecular landscape of gliomas at the single-
cell level.

2. Result

2.1. Design and Validation of an Automated Single Nucleus Total
RNA Sequencing Platform

An automated platform for single-nucleus, random-primer-
based, total RNA sequencing was designed to enhance the se-
quencing throughput of clinical FFPE glioma samples. This
platform comprises four main subsystems: automated single-
nucleus isolation, in situ reactions, automated droplet barcoding,
and sequencing (Figure 1a). The detailed chemical methods of
this automated platform were designed based on our previously
published snRandom-seq protocol (Figure 1b). Multiple FFPE
glioma samples were processed using the automated snRandom-
seq platform (Figure 1c).

The first challenge in large-scale single-nucleus RNA-seq was
efficiently isolating clear and intact single nuclei while preserv-
ing RNA integrity as much as possible. To address the challenge,
we devised an automated single-nucleus isolation system flexible
enough to process FFPE, fixed, frozen, and fresh samples. This
system comprises a user-friendly interface, a programmable me-

chanical controller, a temperature controller, and reservoirs for
samples and reagents (Figure 2a). Accessories such as reagent
syringes, pipette tips, grinding rods, reaction tubes, collecting
tubes, and cell filters were integrated into the setup (Figure S1a,
Supporting Information). Small slices or grains were taken from
the regions of interest in the samples and placed into the auto-
mated single-nucleus isolation instrument, where they were pro-
cessed with optimal parameters. The workflow of this system in-
cludes four key stages: paraffin dissolution and rehydration (for
FFPE samples), lysis, digestion, and filtration (Figure 1b, Sup-
porting Information). The internal structure and flow pathways
of the automated single-nucleus isolation are depicted in Figure
S1c (Supporting Information). Clean and intact single nuclei,
ranging from 5 to 15 μm, were isolated from FFPE, fresh, frozen,
and fixed specimens using this automated system (Figure 2b;
Figure S1d, Supporting Information). The quality of nuclei iso-
lated by this system is comparable to those obtained through
manual operations (Figure S2a,b, Supporting Information). No-
tably, the lysis and digestive buffers, along with the digestion
time, were meticulously optimized to accommodate diverse tis-
sue types in addition to FFPE glioma samples (Table S1, Support-
ing Information). Solid tissues from parenchymal organs (e.g.,
liver, muscle, heart) required the strongest lysis and digestive
condition. Gastrointestinal tissues (e.g., gastric carcinoma) and
immune tissues (e.g., lymphoma) required milder conditions.
Upon completion of this procedure, a single-nucleus suspension
was obtained, ready for subsequent RNA capture.

RNA molecules within each single nucleus were captured
through the multiple annealing of random primers as described
in Figure 1b. To address challenges posed by very small sam-
ples, minimizing batch effects, or reducing reaction costs, an op-
tional pre-indexing strategy was offered during the reverse tran-
scription step. This strategy involved dividing nuclei into differ-
ent tubes for reverse transcription, each with specific pre-indexed
random primers and subsequently pooling them for further pro-
cessing. The resulting cDNAs in the reverse transcription step
were added with poly(A) tailings, enabling the synthesis of the
second DNA strand using barcoded oligo-dT primers.

To achieve precise encapsulation of a single nucleus and a bar-
coded bead within each droplet, and to alleviate intricate man-
ual procedures, we developed an automated microfluidic droplet
barcoding system aided by an artificial intelligence (AI) algo-
rithm (Figure 2c). This system includes various components:
a customized pressure pump, a motorized linear slider with
tube housing, an imaging unit, a main control panel, and a
mechanical stand for microfluidic chip mounting (Figure 2d).
The accessories include microfluidic chips and collecting tubes
(Figure S3a,b, Supporting Information). Within this system,
mixed reagents, single-nucleus suspension, beads, and oil were
directly loaded into the microfluidic chip and subsequently pro-
pelled into the channel using a homemade pressure pump
(Figure 2d). Each individual nucleus with a barcode bead was en-
capsulated into a droplet, with a size distribution ranging from
80 to 100 μm, similar to previous manual snRandom-seq meth-
ods (Figure S2c,d, Supporting Information). Continuous images
of droplet generation were captured by a camera and processed
by AI image recognition technology integrated into the main con-
trol panel (Figure S3c, Supporting Information). By providing mi-
croscope images of various droplets for machine learning model
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Figure 1. Overview of the automated snRandom-seq platform. a) The flowchart illustrates the complete workflow of the automated snRandom-seq
platform. b) A detailed schematic of the chemical methods design used in the automated snRandom-seq platform. c) The table presents details of
glioma FFPE samples performed with automated snRandom-seq. OG: oligoastrocytoma, AS: astroglioma, PXA: pleomorphic xanthoastrocytoma, AA:
anaplastic astrocytoma, H-DMG: high-grade diffuse midline glioma, GBM: glioblastoma, GBM-A: adjacent tissue of glioblastoma, GBM-P: primary
glioblastoma, GBM-R: recurrent glioblastoma.

training, the system can identify droplets that lack beads and
those containing one or more beads (Figure S3d, Supporting In-
formation). The initial and final stages of droplet generation were
found to be particularly prone to producing unstable droplets. To
address this, the main control panel selectively adjusts the motor-
ized linear slider with tube housing based on the number of qual-
ified droplets identified, thereby improving the quality of droplet
barcoding in automated snRandom-seq (Figure S3e, Supporting
Information). Additionally, the microfluidic runner can some-
times become inadvertently clogged with unexpected impurities
during the encapsulation process. When this occurs, the system
automatically increases the pressure to flush out the impurities
and expels the affected section downstream until the observa-
tion window droplets return to normal, after which the system

resumes normal operation. For quality control, this automated
system droplet barcoding system generates a report that assesses
the quality of droplets, including a series of parameters, such as
droplet counts, diameters, counts of droplets containing 0, 1, or
more than 1 bead, and the rate of qualified droplets (Figure 2d).

The feasibility of the snRandom-seq method was validated in
our previous work.[9] In this study, we first compared the per-
formance of the automated and manual versions of snRandom-
seq. Results from an FFPE glioma sample adjacent to glioblas-
toma, analyzed using both automated and manual snRandom-
seq, showed a high correlation (R = 0.97, p < 2.2e-16) in av-
erage gene expression levels (Figure S2e, Supporting Informa-
tion), as well as a substantial overlap in cell clusters on UMAP
plots (Figure S2f, Supporting Information). To further validate
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Figure 2. Automated single-nucleus isolation and AI-assistant droplet barcoding systems. a) Photograph depicting the arrangement of components
within the automated single-nucleus isolation system of snRandom-seq. The corresponding numerical codes for these system accessories are as follows:
i, regent syringe, ii, pipette tip, iii, grinding rod, iv, reaction tube, v, collecting tube, vi, cell filter. b) Microscopical images of nuclei isolated from frozen and
FFPE tumor samples from the same brain and lung cancer tissues using automated snRandom-seq, stained with DAPI. Scale bar, 10 μm. c) Photograph
depicting the arrangement of various components within the automated droplet barcoding system of automated snRandom-seq. d) Schematic diagram
of the automated and AI-assistant droplets barcoding system. e) Dot plot showing the Pearson’s correlation coefficient (R) of the average normalized
gene expression levels between the frozen and FFPE tumor samples from the same glioblastomas (GBM) tissue. Each dot corresponds to the average
normalized expression level of a gene. The red line indicates the linear regression line. The p-value (p) was calculated using a two-sided permutation
test. f) Integrated UMAP maps generated from the automated snRandom-seq data of frozen and FFPE tumor samples from the same GBM tissue.

the consistency and reliability of the automated snRandom-seq
for gliomas, we applied it to matched FFPE/frozen glioma sam-
ple pairs and biological replicates of FFPE glioma samples. High
correlations in average gene expression levels were observed in
both FFPE/frozen sample pairs (R= 0.93, p< 2.2e-16) (Figure 2e)
and biological replicates (R = 0.95, p < 2.2e-16) (Figure S4a, Sup-
porting Information). UMAP plots of both FFPE/frozen sample
pairs (Figure 2f) and biological replicates (Figure S4b, Support-
ing Information) displayed substantial overlaps in cell clusters.
These results provide additional evidence supporting the utility
of automated snRandom-seq for glioma samples.

2.2. Integrative Single-Nucleus Atlas of Glioma Subtypes

Previous scRNA-seq studies of gliomas have predominantly fo-
cused on single subtype of gliomas, leading to a limited un-

derstanding of the comprehensive heterogeneity among vari-
ous glioma subtypes. The automated snRandom-seq platform for
FFPE samples facilitates the exploration of molecular character-
istics across various glioma subtypes by FFPE samples. In this
study, we performed automated snRandom-seq on FFPE sam-
ples of six glioma subtypes, including rare clinical cases, and
one adjacent tissue sample (Table S2, Supporting Information).
The six glioma subtypes included oligodendroglioma (OG), as-
trocytoma (AS), pleomorphic xanthoastrocytoma (PXA), glioblas-
toma (GBM), high-grade diffuse midline gliomas (H-DMG), and
anaplastic astrocytoma (AA). Using unsupervised clustering on
the integrated automated snRandom-seq dataset of these FFPE
samples, nuclei from these distinct samples significantly over-
lapped within the UMAP plot (Figure 3a), separating into 37
clusters based on gene expression patterns (Figure S5a, Support-
ing Information). According to the expression levels of known
markers (Figure S5b, Supporting Information), each cluster was

Small Methods 2024, 2301801 © 2024 Wiley-VCH GmbH2301801 (4 of 13)

 23669608, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

td.202301801 by Z
hejiang U

niversity, W
iley O

nline L
ibrary on [03/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.small-methods.com


www.advancedsciencenews.com www.small-methods.com

Figure 3. Integrative single-nucleus atlas of glioma subtypes. a) UMAP analysis of nuclei isolated from the seven FFPE samples. The main UMAP plot
is colored by identified cell types, with ten cell types identified. The smaller UMAP plot in the upper right corner of Figure 3a is colored by samples.
OG: oligoastrocytoma, PXA: pleomorphic xanthoastrocytoma, AA: anaplastic astrocytoma, AS: astroglioma, H-DMG: high-grade diffuse midline glioma,
GBM: glioblastoma, GBM-A: adjacent tissue of glioblastoma. b) UMAP analysis of the identified glial cells colored by identified subclusters. Nine subclus-
ters of glial cells were identified. OPC: oligodendrocyte-progenitor-like, AC-like: astrocyte-like, MES-like: mesenchymal-like, NPC-like: neural-progenitor-
like. c) A heatmap showing the unique top five differentially expressed genes in the nine subclusters of glial cells, ranked by average log2(foldchange).
Average gene expression values were scaled and transformed to a scale from −2 to 2. The enriched GO terms of the top 30 differentially expressed
genes were shown on the right side of the heatmap. d,e) UMAP analysis of the identified microglial cells/macrophages (d) and fibroblasts (e), colored
by identified subclusters. CAFs: cancer-associated fibroblasts.

classified as glial cells, microglial cells/macrophages, T cells,
fibroblasts, excitatory neurons, inhibitory neurons, endothe-
lial cells, pericytes, and proliferating glial cells (Figure 3a).
Each tumor subtype contained all these identified cell types
(Figure S5c, Supporting Information). However, the propor-
tions of cellular composition exhibited notable differences be-
tween tumor (GBM) and adjacent tissue (GBM-A), as well
as among different glioma subtypes. As expected, glial cells
were the most abundant cell type in these gliomas, except
in PXA, where fibroblasts constituted 50% of all profiled nu-
clei. We identified the top five signature genes of each cell

type (Figure S5d, Supporting Information). Besides the es-
tablished cell type markers, such as MBP for oligodendro-
cytes and COL1A1 for fibroblasts, we discovered potential
markers for these cell types in gliomas, such as SLC4A4
for glial cells. Furthermore, we confirmed the elevated ex-
pression of PTPRZ1 in glial cells, previously considered an
oncogene implicated in tumor promotion and invasion in
gliomas.[12]

We proceeded by isolating glial cells and performing de
novo clustering (Figure S6a,b, Supporting Information). The
nonmalignant glial cells were categorized as astrocytes-1 and
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astrocytes-2 (Figure 3b). The malignant glial cells were catego-
rized as OPC-like, NPC-like, AC-like, or MES-like cell states,
according to the expression levels of established marker genes
(Figure S6c, Supporting Information). Consistent with previ-
ous studies,[13] each glioma subtype exhibited a heterogeneous
composition of glial cells across these four cell states (Figure
S6d, Supporting Information). Compared to other glioma sub-
types, GBM exhibited a higher proportion of NPC-like glial
cells (NPC-like 1 and NPC-like 2). These particular subpop-
ulations of glial cells expressed distinct gene expression pat-
terns, including both mRNAs and long non-coding RNAs (lncR-
NAs) (Figure 3c). CHI3L1, a gene previously implicated in sup-
porting tumor growth by influencing the state of glioma stem
cells,[14] exhibited high expression in the MES-like subclus-
ter. The lncRNA OBI1-AS1, recognized as an astrocyte marker
with a possible role in glioma recurrence and progression,[15]

showed high expression in the AC-like 2 subcluster. We per-
formed Gene Ontology (GO) term enrichment analysis on the
top 30 signature genes of these glial cell subpopulations, reveal-
ing enrichment in several glioma-related terms (Figure 3c).[16,17]

Notably, the signature genes of the astrocytes-2 subcluster
were enriched in L-glutamate transmembrane transport, asso-
ciated with malignant glioma biology.[16] The signature genes
of the MES-like subcluster were enriched in positive regula-
tion of MAPK cascade, associated with glioma invasion and
metastasis.[17]

Previous studies have identified distinct subpopulations of
macrophages and fibroblasts localized around tumor cells as
tumor-associated macrophages (TAMs)[18] and cancer-associated
fibroblasts (CAFs),[19] holding promise as potential therapeutic
targets. We extracted and conducted de novo clustering on the
microglial cells/macrophages and fibroblasts obtained from
these gliomas, respectively (Figures S7a,b and S8a,b, Supporting
Information). We classified the microglial cells/macrophages
into three groups: microglial, myeloid-derived, and fibrotic
macrophages (Figure 3d), based on their expression pat-
terns of specific cell markers (microglial: CX3CR1, P2RY12,
P2RY13, and SELPLG, myeloid-derived: CD163, TGFBI, and
F13A1, fibrotic: COL1A1, COL1A2, COL6A3, and COL6A2)
(Figure S7c, Supporting Information). High-grade gliomas
(GDM, H-DMG, and AA) exhibited higher percentages of
myeloid-derived macrophages (Figure S7d, Supporting In-
formation). Notably, PXA displayed a significant presence
of fibrotic macrophages, consistent with the previous PXA
case reports describing extensive fibrosis.[20] Furthermore,
fibroblasts of these gliomas were further subclustered into
distinct categories: Normal fibroblasts, CAFs, COL11A1+CAFs,
MMP9+CAFs, MMP13+CAFs, CD36+CAFs, PDGFRA+CAFs,
and CXCL12+CAFs (Figure 3e), based on the expression
patterns of signature genes (Figure S8c, Supporting Informa-
tion). PXA exhibited a high percentage of COL11A1+CAFs,
consistent with its macrophage constitution (Figure S8d, Sup-
porting Information). Subpopulations associated with invasion
and metastasis, including MMP9+CAFs, MMP13+CAFs, and
CXCL12+CAFs, were mainly present in PXA and H-DMG. Addi-
tionally, CellChat analysis of the cell subclusters within the PXA
sample highlighted a strong interaction between PDGFRA+CAFs
and fibrotic macrophages (Figure S8e, Supporting
Information).

2.3. Numerous ncRNAs Exhibited Specific Expression within
Distinct Glioma Clusters

Multiple studies have indicated that non-coding RNAs (ncR-
NAs) play critical roles in various biological processes involved in
glioma initiation and progression.[21] Most mainstream scRNA-
seq studies rely on the prevalent poly(A)-based RNA capture
strategy, which targets only polyadenylated mRNAs. This strat-
egy inherently limits the capture of a comprehensive tran-
scriptome, notably missing numerous crucial regulatory RNAs
that lack poly(A)-tails. In this study, the automated snRandom-
seq platform demonstrated its proficiency in detecting a lot
of ncRNAs, including regulatory ncRNAs (lncRNAs and miR-
NAs) and constitutive ncRNAs (snRNAs and snoRNAs) across
all FFPE glioma samples (Figure S9a, Supporting Informa-
tion). The lncRNAs detected by automated snRandom-seq in-
cluded over 6500 unannotated and over 3500 annotated lncR-
NAs (Figure 4a). To further characterize these ncRNAs within
gliomas, we extracted the expression matrix of ncRNAs from
the merged datasets of these FFPE samples and performed a
finding-marker analysis to identify signature ncRNAs across
various cell types (Figure 4b). All these signature ncRNAs, in-
cluding MIR9-1HG (in glial cells and proliferating glia), OBI1-
AS1, and LINC01088 (in glial cells), LINC01572 (in proliferat-
ing glia), LINC01608, LINC00844, LINC00639, and LINC01170
(in oligodendrocytes), LINC01374, MIR646HG, and DLEU1
(in macrophages), MIR3667HG (in macrophages and T cells),
LINC00861 (in T cells), LINC01250 and MIR124-1HG (in ex-
citatory neurons and inhibitory neurons), JARID2-DT (in exci-
tatory neurons), DLX6-AS1 (in inhibitory neurons), TEX41 and
TTTY14 (in fibroblasts), and CARMN (in pericytes), were found
to be lncRNA genes. These lncRNAs may hold signature roles in
identifying specific glioma cell types.

We proceeded to focus on the expression matrix of ncRNAs
within glial cells and identified signature ncRNAs among the
distinct glial cell subpopulations (Figure 4c). Within this set of
ncRNAs, we observed several previously implicated as promot-
ers of glioma progression, such as LINC02283,[22] LINC01088,[23]

LINC00689,[24] and NEAT1.[25] Particularly, NEAT1 exhibited
high expression in the malignant subclusters mainly found in
GBM (MES-like, AC-like 1, NPC-like 1, and NPC-like 2). Con-
sistently, patients with GBM exhibiting high NEAT1 expression
displayed reduced survival times (Overall Survival: P= 0.085, Dis-
ease Free Survival: P = 0.045) (Figure S9b,c, Supporting Informa-
tion). Furthermore, several protein-coding genes associated with
these ncRNAs, such as the neighboring coding gene (SLC7A11)
of signature lncRNA LINC00499 and the gene (EMX2) on the op-
posite strand transcript of signature lncRNA EMX2OS, have been
previously reported to be associated with glioma.[26,27] Moreover,
we collected information about RNA-RNA/Protein interactions,
cancer function states, and related diseases of these signature
ncRNAs (Figure 4c). Notably, the signature ncRNAs of AC-like
2 (LINC01088, OBI1-AS1, POT1-AS1, and LINC00836) were en-
riched in the interaction with protein QKI, which plays a regu-
latory role in glioma stem cell (GSC) stemness.[28] Similarly, the
signature ncRNAs of OPC-like 1 (LINC00689, and KCNQ10T1)
and NPC-like 1 clusters (NEAT1 and APCDD1L-DT) were en-
riched in the interaction with RNAs hsa-miR-346 and hsa-miR-
449b-5p, respectively, both of which regulate glioma growth.[29,30]
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Figure 4. Numerous ncRNAs exhibited specific expression within distinct glioma clusters. a) A bar graph depicting the numbers of unannotated and
annotated lncRNAs detected in the seven FFPE samples by automated snRandom-seq. b) Violin plot illustrating the specifically expressed ncRNAs
in different cell types of gliomas. c) A heatmap showing the top five signature ncRNAs in the nine subclusters of glial cells, ranked by average log2
(foldchange). Average gene expression values were scaled and transformed to a range from −2 to 2. On the right side of the heatmap, information
regarding the interacted RNA, protein, cancer function state, and related diseases of these top 5 signature ncRNAs were provided. This information was
collected from LncSEA2.0 (http://bio.liclab.net/LncSEA/index.php).

These signature ncRNAs were enriched in various cancer func-
tion states. For example, the signature ncRNAs of OPC-like 1
(LINC00689, KCNQ10T1, and CCDC26) and Astrocytes 2 clus-
ters (F11-AS1 and EMX2OS) were enriched in cell growth.
The signature ncRNAs of MES-like (NEAT1, ZFPM2-AS1, and
ADAMTS9-AS2) were enriched in epithelial-mesenchymal tran-
sition (EMT), consistent with the mesenchymal-related mRNA
gene expression signature of MES-like subcluster. These signa-
ture ncRNAs were previously reported to be related to various
diseases. Notably, the specific-expressed ncRNAs of MES-like
(NEAT1 and ADAMTS9-AS2) are related to glioma. Accordingly,
these signature ncRNAs detected by automated snRandom-seq
might exert diverse functions at different stages of glial cells and
could serve as therapeutic targets for gliomas.

2.4. Retrospective Atlas of Matched Primary-Recurrent
Glioblastomas

Conventional scRNA-seq technologies encounter limitations
when attempting to utilize matched primary-recurrent samples
from the same patients for longitudinal clinical studies.[31] This
limitation can potentially result in the omission of crucial infor-

mation regarding tumor progression. Automated snRandom-seq
demonstrated high applicability on archival samples, especially
FFPE samples. We applied automated snRandom-seq to five
pairs of matched primary-recurrent FFPE samples from GBM
patients with different recurrence times (Patient G7: 18 months,
Patient G8: 15 months, Patient G9: 7 months, Patient G10: 5
months, Patient G11: 3 months) (Table S2, Supporting Informa-
tion). Following standard scRNA-seq analysis on the integrated
automated snRandom-seq data, we constructed a retrospective
atlas of GBMs. Nuclei from primary and recurrent FFPE sam-
ples overlapped well on the UMAP plots (Figure S10a,b, Support-
ing Information) and clustered into distinct cell clusters (Figure
S10c, Supporting Information). Main glioma cell types, includ-
ing glial cells, microglial cells/macrophages, proliferative glia,
oligodendrocytes, endothelial cells, pericytes, fibroblasts, and T
cells, were identified in all primary and recurrent samples us-
ing known markers (Figure 5a; Figure S10d, Supporting Infor-
mation). Notably, the proportion of oligodendrocytes was signif-
icantly higher in recurrent sample R1, which had the longest re-
currence time (18 months) (Figure S10e, Supporting Informa-
tion). An increase in macrophages and T-cell infiltration is of-
ten observed in recurrent GBM.[32,33] We found increased propor-
tions of immune cells, including microglial cells/macrophages
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Figure 5. Retrospective atlas of matched primary-recurrent glioblastomas. a) Separated UMAP plots of nuclei from five pairs of matched FFPE samples
of primary-recurrent GBM cases. UMAP plots are colored by identified cell types. P1-P5: primary GBM sample 1–5. R1-R5: recurrent GBM sample 1–5.
b) The proportions of microglial cells/macrophages and T cells in primary and recurrent samples. Left panel: microglial cells/macrophages, right panel:
T cells. c) Separated UMAP plots of glial cells from primary and recurrent GBM samples. UMAP plots are colored by glial cell states. d) Separated
trajectories of glial cells from primary and recurrent GBM samples generated by monocle analysis and colored by glial cell states. e) Dot plot showing
the unique top five signature genes of OPC-like glial cells among different primary and recurrent GBM samples. f) Heatmap showing the expression
scores of lipid metabolism pathways in OPC-like glial cells of different primary and recurrent GBM samples. Source data are provided as a Source Data
file.

and T cells, in the recurrent group, except for R2, which had a rel-
atively long recurrence time (15 months) (Figure 5b). Differences
in the proportions of oligodendrocyte and immune cells in these
recurrent samples might be associated with the recurrence time
and individual patient differences. The proportions of microglial
cells/macrophages in primary samples with relatively short re-
currence time (7, 5, and 3 months) were higher than in primary
samples with longer recurrence time (18 and 15 months) (Figure
S10e, Supporting Information), suggesting a correlation between
microglial cells/macrophages proportion and recurrence time.

Next, we performed de novo unsupervised clustering of glial
cells (Figure S11a–c, Supporting Information). Four main glial
cell states, including MEC-like, AC-like, OPC-like, and NPC-
like clusters, were identified according to previously identified
highly expressed genes (Figure 5c; Figure S11d, Supporting
Information).[13] The proportions of these four glial subpopula-
tions varied among individual patients (Figure S11e, Support-
ing Information). Group preference analysis showed that NPC-
like and OPC-like clusters were more concentrated in primary
samples, while the AC-like cluster was more concentrated in
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recurrent samples (Figure S11f, Supporting Information). We
reconstruct the pseudo-temporal trajectory inference of all glial
cells from primary and recurrent GBM using monocle analy-
sis (Figure S11g, Supporting Information). The glial cells tra-
jectory yielded five developmental hierarchies (State 1–5), with
the NPC-like cluster mainly located at the beginning of the cell
evolution map and the AC-like and MES-like clusters mainly at
the endpoint (Figure 5d; Figure S11h, Supporting Information),
consistent with the previously reported transition direction along
the NPC/OPC-AC-MES axis.[34] Notably, the OPC-like cluster was
mainly located at a branch of the starting point (state 5), especially
in the primary samples P4 and P5, which had relatively shorter re-
currence times. Previous studies have shown that OPC-like cells
exhibit greater proliferation and tumor-propagating potential.[35]

Combined with the higher proportion of OPC-like cluster in P4
and P5 (Figure S11e, Supporting Information), we speculate that
OPC-like glial cells may be associated with GBM recurrence and
warrant further therapeutic attention. We identified signature
genes of OPC-like cells in these primary and recurrent sam-
ples and discovered several glioma-associated genes (LHFPL3,[36]

DLGAP1,[37] and LINC02283)[22] highly expressed in the pri-
mary samples P4 and P5 (Figure 5e). The oncogenic lncRNA
LINC02283 was also identified as a specifically expressed ncRNA
among the glial subpopulations in the integrative single-nucleus
atlas of glioma subtypes (Figure 4c), suggesting LINC02283 may
be a critical regulator in glioma biology. Lipid metabolism is re-
ported to be significantly dysregulated in gliomas.[38] We eval-
uated scores of lipid metabolic pathways in OPC-like glial cells
from different samples and found these pathways enhanced in
recurrent samples (Figure 5f). Interestingly, unsaturated fatty
acid (alpha-linolenic acid, arachidonic acid, and linoleic acid)
metabolism was depleted in the primary P4 and P5, which had
shorter recurrence times. Glycerophospholipid, glycerolipid, and
sphingolipid metabolism were stronger in P4 and P5 than in pri-
mary samples with longer recurrence times. Biosynthesis path-
ways, including biosynthesis of unsaturated fatty acids, fatty acid
biosynthesis, and glycosphingolipid biosynthesis-ganglio series,
were also stronger in P4 and P5. These results suggest that the ac-
cumulation of unsaturated fatty acids in OPC-like glial cells may
be positively associated with GBM recurrence.

3. Discussion

Gliomas are characterized by their intrinsic heterogeneity
and tendency for recurrence. The advancements in single-cell
RNA sequencing (scRNA-seq) technologies have empowered re-
searchers to scrutinize the intricacies of glioma subpopulations,
unraveling their composition, functions, and interactions.[19,39–42]

In this study, we introduced an automated platform designed
for high-throughput single-nucleus total RNAs sequencing of
archival FFPE samples. Previous studies often rely on fresh or
frozen samples, which can restrict specimen collection from rou-
tine clinical archives for investigating glioma subtypes and recur-
rence. Moreover, previous studies commonly employ oligo(dT)-
based scRNA-seq platforms, such as 10X Genomics, which have
limitations in transcriptome coverage and biases toward the 3′-
end. Consequently, their findings primarily stem from down-
stream analysis of mRNA expression profiles. In this study, we
developed automated snRandom-seq and applied it to diverse

glioma subtypes, as well as matched primary-recurrent GBMs.
Although our study shares similarities with previous scRNA-seq
studies in exploring glioma heterogeneity and cellular compo-
sition, it extends these findings by comprehensively examining
multiple glioma subtypes and uncovering subtype-specific varia-
tions in cellular composition and functional characteristics. Us-
ing automated snRandom-seq, our study extends this exploration
by detecting a broader range of ncRNAs and identifying signature
ncRNAs associated with specific glioma cell types and subpopu-
lations. Furthermore, the longitudinal analysis in this study, us-
ing matched primary and recurrent GBM samples, elucidates dy-
namic changes in cellular composition and molecular pathways
associated with tumor recurrence.

A recent advancement introduced a high-throughput single-
cell DNA-seq method designed specifically for archival FFPE
samples,[5] recognizing the substantial value of clinical FFPE
samples in medical research and healthcare. Over the years, mil-
lions of FFPE samples have been preserved, often paired with
detailed pathological and clinical documentation, making them
readily accessible for the study of virtually any disease.[43] It is
both important and feasible to evaluate the generalizability of the
biological findings presented in this study and to further explore
glioma progression in larger cohorts of FFPE glioma samples.
Meanwhile, it is essential to conduct molecular biology experi-
ments on more extensive collections of FFPE glioma samples to
further validate the molecular characteristics and potential ther-
apeutic targets of glioma, such as the lncRNA LINC02283.

The optimized single-nucleus isolation system and ran-
dom primer-based RNA capture strategy within automated
snRandom-seq render it highly versatile, accommodating various
sample types, including fresh, frozen, fixed, and FFPE tissues.
We are actively exploring opportunities to broaden the applicabil-
ity of automated snRandom-seq to encompass samples such as
blood, saliva, feces, and even microbe, thereby extending diverse
clinical application scenarios. This rapid cancer data accumula-
tion demands an inevitable trend of experimental instruments
automating. More advanced technologies, such as robotics, arti-
ficial intelligence, and machine learning, are integrating into ex-
perimental processes. We are committed to the development of a
fully automated, sample-in-result-out scRNA-seq platform, aim-
ing to facilitate its utilization in screening, diagnosis, treatment
monitoring, and prognosis evaluation across a wide spectrum of
conditions.

Our application of automated snRandom-seq to over one
hundred clinical cancer FFPE tissues has generated scRNA-seq
datasets encompassing total RNA information. We are extend-
ing the application of automated snRandom-seq to more types
of human cancers. Integration of these scRNA-seq datasets with
clinical and basic research data is also currently underway. Addi-
tionally, the data preprocessing and traditional analysis of scRNA-
seq data are time-consuming, energy-draining, and easy to intro-
duce human error. Many researchers have reported automated
pipelines for comparative analysis of scRNA-seq datasets,[44,45]

which can be integrated into automated snRandom-seq platform
to prompt the widespread applications of this large-scale and
comprehensive scRNA-seq database across a wide range of sci-
entific disciplines.

In recent years, the concept of “big data” in clinical set-
tings has evolved significantly, driven by breakthroughs in
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high-throughput technologies. Alongside this evolution, inno-
vative automation technologies, such as machine learning and
microfluidics, have increasingly been applied in the biomedical
field, offering promising alternatives to traditional models.[46–48]

The rising demand for these automation technologies stems
from their ability to deliver more precise, efficient, and cost-
effective solutions. A fully automated and integrated high-
throughput single cell/nucleus total RNA sequencing platform,
which encompasses a kit, instrument, and software, combining
the utilization of databases, holds substantial potential to become
an essential clinical tool for cancer diagnosis and treatment.

4. Experimental Section
Experimental Model: The collection of human samples and research

conducted in this study was approved by the Ethics Committee of
Huashan Hospital, Fudan University (approval numbers: KY2022-762)
and the Research Ethics Committee of the First Affiliated Hospital, Zhe-
jiang University School of Medicine (approval numbers: IIT20220893A).
Clinical FFPE and frozen glioma samples were provided by Huashan Hos-
pital, Fudan University. Informed written consents of all participants for
specimen collection and further analysis were obtained. The other samples
were provided by the First Affiliated Hospital, Zhejiang University School
of Medicine. This study is compliant with the Guidance of the Ministry of
Science and Technology (MOST) for the Review and Approval of Human
Genetic Resources (approval numbers: 2023BAT0055).

Automated Single-Nucleus Isolation: The setup and accessories of the
automated single-nucleus isolation system are shown in Figures 2a and
S1a (Supporting Information). The setup includes a man-machine inter-
face, a programmable mechanical controller, a temperature controller, and
reservoirs for samples and reagents. The accompanying accessories in-
clude syringes for reagents, pipette tips, grinding rods, reaction and col-
lection tubes, and cell filters. For FFPE samples, dewaxing and rehydration
reagents were introduced into the tube and incubated with vibration, fol-
lowed by sequential removal. To ensure complete paraffin removal, the de-
waxing step was repeated once or twice, as dictated by the specific sample
requirements. The tissue was quickly and completely grinded in the pres-
ence of lysis buffer under a low temperature (≈4 °C). Then, tissue was
dissociated by digestive enzymes (Collagenase under ≈37 °C, Protein K
under ≈50 °C). The resulting mixture of dissociated tissue and buffer was
filtered, and the single-nucleus suspension was collected. The detailed in-
ternal structure and the flow directions of the automated single-nucleus
isolation system are illustrated in Figure 2c. The dewaxing and rehydra-
tion regents were sucked and injected into the injector tube in turn by the
syringe device. All the waste liquid was siphoned off by the pipette tip at the
end of each reaction and stored in the waste liquid tank. The lysis buffer
was injected by the syringe device into the injector tube. After lysis and
digestion, the mixture was transferred to the cell filter above the collecting
tube by the pipette tip.

The lysis buffer, digestive enzyme, digestive time of various tissue
types are provided in Table S1 (Supporting Information). The high lysis
buffer contained 1X PBS buffer, 0.2% Nonidet(R)P-40 (NP-40, Sangon
Biotech, Cat # A600385), and 1 U μL−1 RNase Inhibitor. The medium ly-
sis buffer contained 1X PBS buffer, 0.1% TritonX-100 (Sangon Biotech, Cat
# A600198), and 1 U μL−1 RNase Inhibitor (Yeasen Biotechnology, Cat #
10610ES03). The low lysis buffer contained 1X PBS buffer, 0.1% Tween-20
(Sangon Biotech, Cat # A600560), and 1 U μL−1 RNase Inhibitor. Diges-
tive enzymes, including 1 mg mL−1 Proteinase K (Sangon Biotech, Cat #
A610451) or 1 mg mL−1 Collagenase I (Gibco, Cat # 17 100 017) were
used.

In Situ DNA Block: The single nucleus suspension was assessed and
quantified through DAPI staining under a fluorescent microscope. Block
primers, in accordance with the sequence provided in the previous work,[9]

were ordered from Sangon Biotech company (China). The reaction mixture
was prepared as follows: 100 000–1 000 000 nuclei in 25.5 μL of PBS, 5 μL
of 10 μm block primers, 2 μL of DNA Polymerase (M20 Genomics, Cat

# R20123124), 10 μL of 5X DNA polymerization buffer, 5 μL of 100 mm
dNTP, 2.5 μL of RNase Inhibitor. This mixture was incubated at 37 °C for
30 min. Then, nuclei were subjected to three washes with PBST (1X PBS
with 0.05% T-ween 20) to eliminate any residual primers and reagents.

In Situ Reverse Transcription: Following the in situ DNA block, in situ
reverse transcription was proceeded. Random primers were ordered from
Sangon Biotech company (China) according to the sequence provided in
the previous work.[9] The reaction mixture was composed of 100 000–
1 000 000 nuclei in 27.5 μL of PBS, 5 μL of 10 μm random primers, 2.5 μL
of Reverse Transcriptase (M20 Genomics, Cat # R20123124), 10 μL of 5X
reverse transcription buffer, 2.5 μL of 100 mm dNTP, 2.5 μL of RNase In-
hibitor. The reaction mix was incubated with twelve cycles of multiple an-
nealing ramping from 8 °C to 42 °C and 30 min at 42 °C on a thermocycler.
Then, nuclei were washed with PBST three times to wash away the residual
random primers and regents.

dA Tailing: dA tailing was performed after in situ reverse transcrip-
tion. The following reaction mix was prepared: 100 000–1 000 000 nuclei
in 39 μL PBS, 5 μL 10X TdT reaction buffer, 0.5 μL TdT enzyme (NEB, Cat
# M0315S), 0.5 μL 100 mm dATP (NEB, Cat # N0440S), 5 μL CoCl2, and
incubated at 37 °C for 30 min. Then, nuclei were washed with PBST three
times to wash away the residual reagents.

Design and Fabrication of the Microfluidic Device: The microfluidic chip
shown in Figure S2a (Supporting Information) was designed using the
computer-aided design software AutoCAD (2021, AutoDESK, USA). The
established protocols[49] were employed for fabricating the polydimethyl-
siloxane (PDMS) microfluidic chip, with a channel depth of 50 μm. Molds
for a microfluidic device were made using a photolithographic approach,
consisting of centrifugal coating and modeling the SU-8. Silicon molds
were employed for casting PDMS (Sylgard-184) to fabricate microfluidic
devices.

AI-Assistant Droplets Barcoding: As illustrated in Figure 2c,d, an AI-
assistant droplet barcoding system consisting of a home-made pressure
pump was developed, a motorized linear slider with tube housing, an
imaging unit, a main control panel, and a mechanical stand for microflu-
idic chip mounting. The homemade pressure pump was integrated within
the AI-assistant droplet barcoding system and capable of supplying at
least four independent pneumatic pressure sources with a range of 0–
40 kPa and stability of <0.02 kPa. The imaging unit consists of an LED
lighting source, a CMOS camera (MER2-U3, Daheng Imaging), and a 4X
lens and was mounted underneath the droplet generation region of the
microfluidic chip. Once the experiment was triggered, droplet generation
within the microfluidic chip was real-time monitored and analyzed. The
captured images for droplet generation were sent to the main control
panel for processing and video clips were shown to the experiment opera-
tor via the man-machine interface. At the beginning and ending stages, un-
qualified droplet series were discarded into the waste tube. Once droplet
quality was confirmed by the control panel, the motorized liner slider was
switched, and therefore qualified droplets were collected to the keeping
tube. After the experiment is completed, a summary report including a se-
ries of parameters, such as droplet counts, diameters, etc., will be shown
in the man-machine interface, and/or a PDF version will be available for
download.

Real-Time Image Processing: The dataset including more than 5000
droplet generation images was collected from the previous experiment
and annotated manually. The computer vision model was then trained
using YOLOv5 and verified using 1000+ additional experimental im-
ages. During the experimental course, real-time droplet generation was
recorded by the imaging unit, and then droplet quality was analyzed and
processed by a control panel using the trained model. Modeling training
was carried out as follows. Step 1: Microdroplet morphology dataset cre-
ation. First, collect 5000+ various droplet generation images within the
microfluidic channel using the droplet barcoding system. Second, manu-
ally label each collected image and identify the droplet subtype (for ex-
ample, 1-droplet-0-bead, 1-droplet-1-bead, 1-droplet-2-beads, over-sized
droplet, under-sized droplet, etc.) using labeling (an opensource tool).
Step 2: Split the dataset and modify the configuration file. First, by running
a self-written Python code, split the collected images to 3 subtypes, that is,
testing set (10%), training set (80%), and verification set (10%), and save
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them into predefined catalogs. Second, create a new .yaml file under the
data folder within the YOLOv5 directory, and then modify the created .yaml
file to match the training according to YOLOv5 official instructions. Step
3: Model training. First, run train.py file within the YOLOv5 directory and
save after adjusting relevant parameters to match the training. Second, re-
run train.py file to trigger the training process and then a best.pt file would
be created once completed. Step 4: Model verification. Verify the model us-
ing created best.pt file under: runs/train/exp/weights within the YOLOv5
directory. The verification results are available under YOLOV5/runs/detect
and model accuracy will be summarized by comparing the verification re-
sults with original labeled images. Iteration of Step 2, 3, and 4 is necessary
to continual improve the model until the model accuracy is stably >85%
during the model verification.

Second-Strand cDNA Synthesis: The morphology of nuclei after in situ
reactions was observed by optical microscope. To ensure a maximum of
one nucleus per droplet, nuclei were counted and diluted to a concentra-
tion approximating one cell in every ≈10 droplets, based on the Poisson
distribution described by Zilionis et al.[49] To prevent cell sedimentation
in the microfluidic chip’s input well during the droplet barcoding process,
the nuclei were adjusted to match the medium’s density by using a 50%
Optiprep solution. Nuclei, 2X DNA extension reaction mix, and barcoded
beads (M20 Genomics, Cat # R20123124) were encapsulated into droplets
using the AI-assistant droplet barcoding system. Then, the emulsions were
incubated at 37 °C for 1 h, 50 °C 30 min, 60 °C 30 min, and 75 °C 20 min.
After the barcoding reaction, droplets were broken by mixing with PFO
buffer. The aqueous phase was taken out and purified by Ampure XP beads
(Beckmen, Cat #A63881). PCR primers (Primer1 and Primer2) were or-
dered from Sangon Biotech company (China) according to the sequence
provided in the previous work.[9] PCR was performed to amplify the pu-
rified product using Primer1 and Primer2 primers. The amplified product
was purified by Ampure XP beads and quantified by Qubit.

Library Preparation: The sequencing library was constructed according
to the VAHTS Universal DNA Library Prep Kit (Vazyme, Cat #ND607-01)
for Illumina V3. About 50 ng of DNA fragments were used to construct
the sequencing library. The input-DNA and final library were quantified by
Qubit2.0 (Life Technologies). The fragment sizes of input DNA and final
library were measured with Qsep100 DNA Fragment Analyzer (BIOptic).
The DNA fragments were purified and selected using AMPure XP beads.
Sequencing was performed using the NovaSeq 6000 and S4 Reagent Kit
with paired end reads of 150.

Data Analysis—Preprocessing of Automated snRandom-seq Data: First,
primer sequences and extra bases generated by the dA-tailing step were
trimmed in raw sequencing data. Then for each Read1, UMI (8 nts) and
cell-specific barcode (30 nts) were extracted and merged sequenced bar-
codes that could be uniquely assigned to the same accepted barcode with
a Hamming distance of 2 nts or less. Read2 was used to generate the gene
expression matrix by the STARsolo module in STAR (2.7.10a) with reason-
able parameters. To determine the number of nuclei in each sample, the
scattergram of log10(genes) for each possible barcode was plotted and
used the position of the minimum with the highest value of log10(genes)
as the threshold: only barcodes with the number of genes above this
threshold were used for downstream analysis.

Data Analysis—Clustering and Downstream Analysis: The gene expres-
sion matrix was generated after barcode filtering and removal of mitochon-
drial RNAs and ribosomal RNAs. The analysis and visualization of auto-
mated snRandom-seq data were conducted using the Seurat 3 toolkit[50]

within RStudio (4.2.1), which encompassed a range of processes: pre-
processing, integration, visualization, clustering, cell type identification,
and differential expression testing. Genes detected in fewer than 3 nuclei
were filtered out. The following thresholds were used for nuclei-level filter-
ing: nCount_RNA < CountThresh & nFeature_RNA > 200. CountThresh
= mean(nCount_RNA) + 2 * sd(nCount_RNA). For the integration of au-
tomated snRandom-seq datasets, counts were normalized and scaled in
Seurat. The integration was executed using the Harmony package[51] in
R. Integrations were performed across the FFPE/fresh comparison sam-
ples, tumor subtypes, and primary/recurrent comparison samples, respec-
tively. Within each sample, 2000 anchors were identified, and the integra-
tion of automated snRandom-seq datasets was realized through the In-

tegrateData function, utilizing 20 dimensions.[52] To construct integrated
datasets, the shared nearest neighbor (SNN) graph was created by con-
ducting principal component analysis (PCA), followed by the application
of FindNeighbors using 30 principal components. Clusters were subse-
quently delineated using the FindClusters function with a resolution of 1.
The visualization of clusters used UMAP of the principal components, as
implemented in Seurat. The cell type identification for each cluster was ac-
complished manually using a published set of marker genes. Marker genes
were identified using the FindAllMarkers function within Seurat. The resul-
tant marker genes matching the filter criteria (only.pos = TRUE, min.pct =
0.25, logfc.threshold = 0.25) were kept. lncRNA was defined as long non-
coding RNA sequences identified from Gene Transfer Format (GTF) files
downloaded from the GENCODE database. lncRNAs without associated
gene names were classified as unannotated lncRNAs.

Data Analysis—Correlation Analysis: To compare gene expression lev-
els with the scRNA-seq data from FFPE and fresh samples, standard nor-
malization and scaling procedures were applied. The average normal-
ized expression values were calculated using Seurat’s “AverageExpres-
sion” function. The natural logarithm of the average expression with one
added pseudo count was plotted and the coefficient of variation and p-
value were calculated using the ggpubr package (0.4.0) in R.

Data Analysis—Functional Pseudotime Analysis: The differentiation tra-
jectory of a set of glioma cells was performed with Monocle3 and Seurat
packages in R.

Data Analysis—Analyses of Lipid Metabolic Pathways: The visualization
and quantification of the lipid metabolic diversity of single cells in each
cluster were performed with scMetabolism (v0.2.1)[53] package in R.

Data Analysis—Group Preference Analysis: Group preference of each
cell state in primary-recurrent GBM samples was calculated by the Chi-
Square test (RO/E)[54] using chisq.test function in R.

Data availability: The automated snRandom-seq data generated in
this study have been deposited in the Genome Sequence Archive database.
Source data are provided with this paper.

Code availability: The code for the preprocessing of automated
snRandom-seq data is available at https://github.com/wanglab2023/
smRandom-seq.

Statistical Analysis: Statistical details for each experiment are provided
in the figure legends. Pre-processing of the automated snRandom-seq
data was described in Data Analysis section. The single nuclei isolation
experiment and droplet barcoding experiment were repeated more than
three times independently with similar results. The p value (p) for the Pear-
son’s correlation coefficient (R) was computed from two-sided permuta-
tion test. The ggpubr package (0.4.0) in R was used for statistical analysis.
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