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Abstract 

Microbial communities such as those residing in the human gut are highly diverse and complex, and 

many with important implications in health and diseases. The effects and functions of these 

microbial communities are determined not only by their species compositions and diversities but 

also by the dynamic intra- and inter-cellular states at the transcriptional level. Powerful and scalable 

technologies capable of acquiring single-microbe-resolution RNA sequencing information in order to 

achieve comprehensive understanding of complex microbial communities together with their hosts 

is therefore utterly needed. Here we report the development and utilization of a droplet-based 

smRNA-seq (single-microbe RNA sequencing) method capable of identifying large species varieties in 

human samples, which we name smRandom-seq2. Together with a triple-module computational 

pipeline designed for the bacteria and bacteriophage sequencing data by smRandom-seq2 in four 

human gut samples, we established a single-cell level bacterial transcriptional landscape of human 

gut microbiome, which included 29,742 single microbes and 329 unique species. Distinct adaptive 

responses states among species in Prevotella and Roseburia genus and intrinsic adaptive strategy 

heterogeneity in Phascolarctobacterium succinatutens were uncovered. Additionally, we identified 

hundreds of novel host-phage transcriptional activity associations in the human gut microbiome. Our 

results indicated the smRandom-seq2 is a high-throughput and high-resolution smRNA-seq 

technique that is highly adaptable to complex microbial communities in real-word situations and 

promises new perspectives in the understanding of human microbiomes. 

 

Keywords  single-microbe RNA sequencing (smRNA-seq), droplet microfluidics, microbiome, host-

phage association, smRandom-seq2 
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Introduction 

The human microbiome is made up of huge number and a large variety of microbes in the 

gastrointestinal tract and has significant links to various human health- and disease-related 

conditions(Natarajan et al., 2020, Sharma et al., 2018). The behavior and biological effects of a 

microbial community are determined not only by its species composition and diversity but also by 

the cell states that occur within each microbe. The bacterial cell states are heavily influenced by the 

gene transcriptional activity of each microbe included in the community(Chong et al., 2014). For 

instance, previous studies reported that Escherichia coli have distinct persistence phenotypes after 

antibiotic treatment, which was caused by the heterogeneity of gene transcriptional 

activity(Roemhild et al., 2022). Variations in bacterial transcriptional states within subpopulations 

can result in differences in essential traits such as antibiotic resistance and metabolic 

capabilities(Smith et al., 2023), which can have a significant impact on human health. Therefore, it is 

necessary to adopt further approaches to achieve a complete functional characterization of host-

associated microbes, given the well-known functional heterogeneity among populations of bacteria.  

The advancement of single-cell RNA sequencing and its successful application in mammalian 

systems in the last decade has shed light on the tremendous transcriptional heterogeneity of cell 

types and states and transformed biological research in multiple fronts(Klein et al., 2015, Papalexi et 

al., 2018, Han et al., 2021, Paik et al., 2020, Van de Sande et al., 2023, van der Leun et al., 2020). Of 

note, several bacterial scRNA-seq methods (for instance microSPLiT(Kuchina et al., 2021), PETRI-

seq(Blattman et al., 2020), MATQ-seq(Imdahl et al., 2020), par-seqFISH(Dar et al., 2021), ProBac-

seq(McNulty et al., 2023), BacDrop(Ma et al., 2023), smRandom-seq(Xu et al., 2023a)) have been 

developed recently. Nevertheless, among several major limitations, the current microbial techniques 

are limited to well-characterized taxa and still not applicable to clinical- and physiology-relevant 

human microbiome samples yet. Consequently, the studies using the existing methods only looked 

at population heterogeneity in few well-characterized bacteria, such as artificial lab-generated 

culture mix. Therefore, a single-microbe RNA sequencing (smRNA-seq) technique for poorly-

characterized and complex microbial communities in real-world is critically needed. 

In this study, we introduce smRandom-seq2, a high-throughput and high-resolution smRNA-seq 

method which is highly adaptable to complex microbial community. Through the analysis of four 

fecal samples collected from healthy human subjects, we successfully obtained 29,742 single 

microbe barcodes from the gut samples. We further developed an analysis pipeline for microbe 

annotation and bacteria-phage transcriptional activity in the complex microbial community. All in all, 

we demonstrate that smRandom-seq2 is a novel sequencing technique for investigating single 

microbe transcriptional activity and can provide insights into the functional heterogeneity and 

interplay between bacteria and bacteriophages in human gut microbiome.  

Results 

Overview of the smRandom-seq2 technique 

The gut microbiome presents unique difficulties for smRNA-seq due to its complexity and low 

efficiency of RNA capture for diverse species. To increase the efficiency of reverse transcription for 

all species and reduce cross-contamination, we designed a set of random primers with “GAT” three 

nucleotides and pre-indexes based on previous works(Sheng et al., 2017, Xu et al., 2023b). The fixed 
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bacteria were evenly divided into 12 tubes for reverse transcription (RT) reaction with the pre-

indexed random primers (Fig. 1). The underlying basis for the primer optimization in smRandom-

seq2 is that the composition of human microbial community is much more complicated than 

cultured bacteria, which causes the capture efficiency of common random primers significantly 

decreased, leads to the bacteria capture bias and results in a low number of species and genes 

detected in the microbial community samples. So we systematically optimized the random primer in 

smRandom-seq2. We have screened different random and semi-random primer designs, and a set of 

GAT random primers with the highest efficiency was ultimately selected. And the results showed 

that the novel design of GAT random primers named PIX-1 showed the highest cDNA yield (Fig. S1A, 

the 12 random primers are shown in Tables S1 and S2). 

Subsequently, a poly (dA) tailing step was performed to add poly(A) tails on the 3’ side of the 

cDNAs inside the bacteria. To effectively barcode individual bacteria, we developed an automated 

droplet collection system to generate smaller droplets with smaller poly (T) barcoded beads than the 

preceding inDrop platform wherein droplets were approximately ~240 μm and beads measured 

around ~60 μm, our study adopted diminutive dimensions of droplets (~80 μm) and beads (~40 μm) 

(Fig. S2, the barcoded primers are shown in Table S2). By utilizing smaller droplets, we effectively 

increase the bacteria count within each droplet of the same volume. In addition, the reduced 

volume of smRandom-seq2 leads to higher cDNA concentrations in the reaction systems. This 

system allowed for the efficient generation of unique barcodes for each bacterium’s cDNAs and will 

help to increase the capture efficiency in smRandom-seq2. After barcoding, the cDNAs were pooled 

and PCR amplified for sequencing.   

Analysis methods for scRNA-seq data in mammalian systems have been well developed in 

recent years. However, these methods could not be applied on smRNAs from a complex microbial 

community for several reasons: (1) Current scRNA analysis methods were all based on a few species 

with well annotated reference genomes. However, in the microbiome samples, various bacteria 

species were included in one smRNA dataset. It is difficult for the gene expression level 

quantification in each single microbe by a high-quality genome and its gene annotation. (2) Diverse 

bacteria exist in a microbial community. Even with the gene expression generated in each single 

microbe, how to integrate the expression data from multiple bacteria species is still a challenge. (3) 

Relationships between bacteria and phages in human gut were mainly statistical speculated using 

the metatranscriptomic datasets up to now and no method could directly dissect the host-phage 

associations in smRNA-seq data. To solve these problems, we developed a computational pipeline, 

which contained three modules, single microbe annotation (MIC-Anno), the bacteria (MIC-Bac) and 

phage (MIC-Phage) transcriptional activity analysis, for smRNA-seq dataset from complex microbial 

community (Fig. 1). By the above pipeline, we are able to obtain accurate taxonomic information for 

each microbe and further bacterial and host-phage association analysis from the smRNA-seq 

(smRandom-seq2) data. 

Validation of smRandom-seq2 performance using mock microbial communities  

We conducted the smRandom-seq2 assay on a mock community consisting of both gram-negative 

bacteria (E. coli, K. pneumoniae, A. baumannii, and P. aeruginosa) and gram-positive bacteria (S. 

aureus) to validate the optimized methods. Prior to microfluidic encapsulation, we confirmed the 

single bacterial morphology and manually counted the bacteria under a microscope. We evaluated 
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the efficiency of droplet barcoding under a microscope, and assessed the quality of the resulting 

cDNA library using electropherograms. During the loading procedure, the number of loaded cells 

into the mocrofluidic device was ~10,000, about 50 μL droplets that containing 2,500 cells were used 

for further experiment. Finally, we recovered 1,103 cells (~44% cell recovery rates) with the 

expression of a minimum of 98 genes per cell. The obtained bacterial library was further sequenced 

and their RNA profilings were visualized with Uniform Manifold Approximation and Projection 

(UMAP) dimensionality reduction and displayed clearer separation (Fig. 2A). The results demonstrate 

that smRandom-seq2 efficiently captured mRNA from each bacterial species, with an average 

median count of 260 genes per cell for A. baumannii (449), E. coli (248), S. aureus (303), K. 

pneumoniae (155), and P. aeruginosa (166) (Fig. 2B). The median purity of each species is between 

0.90–0.99 (Fig. S3D). The technical repeatability of the smRandom-seq2 was verified by high 

correlation (R = 0.90, P < 2.2 × 10−16) on gene expressions among replicates (Fig. S3G). In addition, 

our analysis results showed that only 0.9% of the sequenced reads were mapped to the non-coding 

regions in the genome, which significantly lower than the total non-coding regions percentages 

(11.26%) in the reference genome. These results demonstrated that little DNA contamination 

existed in smRandom-seq2. 

 

Transcriptional activity landscape of individual bacterium in a human gut microbiome 

We first proceeded to apply the smRandom-seq2 technology to a human fecal sample from a 

healthy donor. In total, 8,478 cells were captured from the sample and an average depth of 12,782 

reads per cell (unique barcode). As the human gut microbiome contained many bacterial species, we 

first applied MIC-Anno for bacterial annotation in the gut dataset. Based on the annotation results, 

we identified 98 species in the gut microbiome. Among them, 15 genera were higher abundance 

than 1% (Fig. 3A) and the top five abundant genera were Prevotella, Phascolarctobacterium, 

Clostridium, Dorea, and Roseburia. To validate the bacterial percentages or composition, we also 

performed metatranscriptome sequencing on the same gut samples and calculated the species 

abundance using MetaPhlAn2. The results showed that the bacterial abundance by smRandom-seq2 

was significantly correlated with metatranscriptome sequencing (R = 0.98, P < 0.001), suggesting 

that smRandom-seq2 could capture different bacterial species in the gut microbiome without 

obvious bias (Fig. S4A). To investigate whether there were mixed contamination between barcodes 

in the smRandom-seq2, we further evaluate the purity (reads percentage of the corresponding 

annotation taxon) of each barcode in different genera (Fig. S4B) and the results indicated that most 

of the barcodes had a high purity (>90%). In the species level, the median purity of each species is 

between 0.89–0.95. 

We further used MIC-Bac to acquire single bacterial gene expression data of the gut microbiome 

for the smRandom-seq2 data. The proportion of rRNA in this microbiome sample is 75.30%. Upon 

analysis subsequent to rRNA removal, each bacterium, on average, encompasses 3,158 non-rRNA 

reads. Despite the absence of rRNA depletion during sequencing, the quantity of non-rRNA 

sequences within the samples is sufficient to facilitate subsequent analysis of bacterial gene 

functions. After removing rRNA genes, for each genus in the gut microbiome, we detected 170, 186, 

386, 167, 209, 211, 128, 272, 218 median genes per cell in genus Prevotella, Phascolarctobacterium, 

Clostridium, Dorea, Roseburia, Lachnospira, Faecalibacterium, CAG-81, and Fusicatenibacter, 
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respectively (Fig. S4C). The most highly detected expressed genes encoding ribosomal proteins and 

translation elongation machinery. Based on the integrated gene expression count matrix of all 

barcodes, 11 cell clusters or the gut microbiome transcriptomic states were grouped (Fig. S4D). 

Based on the taxonomic annotation results, the 11 cell clusters were assigned to 9 bacterial genera 

which included Prevotella, Clostridium, Fusicatenibacter, Dorea, CAG-81, Roseburia, 

Phascolarctobacterium, Faecalibacterium, and Lachnospira (Fig. 3B). At last two clusters were 

included in the Prevotella genus (Cluster #0, #10) and Roseburia genus (Cluster #6, #9), respectively. 

To investigate the potential functional heterogeneity in these two genera, we further annotated the 

Prevotella and Roseburia clusters into species level.   

 

Distinct adaptive responses states among species in the human gut microbiome 

In the Prevotella genus, a total of 1,755 cells were identified as 11 Prevotella species, most being P. 

copri (79%) and P. sp900767615 (7.2%), which corresponded to Cluster #0 and Cluster #10, 

respectively (Fig. 3C). P. copri is a well-known dominant bacterial species in human gut(Prasoodanan 

et al., 2021). To further validate the annotation results, we assembled the transcriptome based on 

the reads in all barcodes of corresponding species. The assembled transcripts of P. copri and P. 

sp900767615 were mostly assigned to the available genomes of the corresponding species. To 

investigate functional differences between the two Prevotella species, we identified the 

differentially expressed genes (DEGs) between them (Table S3). Interestingly, we found that DEGs 

related with adaptive cellular responses pathways, e.g., rcsC1, rcsC2, rcsC5, rcsC7, were significantly 

up-regulated in P. sp900767615 than P. copri and other Prevotella species (Fig. 3D). These up-

regulated genes were sensor histidine kinases which regulated adaptive cellular responses to 

chemical or physical state of the environments. The results indicated the functional heterogeneity as 

adaptive responses existed among species in the Prevotella genus.  

   In the Roseburia genus, a total of 712 cells were identified as three Roseburia species, including R. 

hominis (36%), R. intestinalis (18%) and R. sp900552665 (46%), which related to Cluster #6 and 

Cluster #9, separately (Fig. 3C). The R. hominis and R. intestinalis are familiar bacterial species in 

human gut. To investigate the functional differences between the three Roseburia species, we 

identified DEGs among them (Table S4). The genes related with cell motility, e.g., hag1, were 

significantly up-regulated in R. hominis (Fig. 3D), which consistent with previous report about R. 

hominis being a flagellated gut anaerobic bacterium(Patterson et al., 2017). In addition, the DEGs 

related with adaptive-response sensory (e.g., sasA3) and multidrug resistance (e.g., mdtC) highly 

expressed in R. intestinalis. In summary, the results indicated that smRandom-seq2 could sensitively 

capture functional heterogeneity among bacterial species in a complex microbial community. 

 

Intra-population adaptive strategy heterogeneity in the human gut microbiome 

Among all barcodes (cells) identified in the gut microbiome, Phascolarctobacterium is one of the 

most abundant genera. Phascolarctobacterium can produce short-chain fatty acids, including acetate 

and propionate, and associates with the metabolic state and mood of the host. Interestingly, all cells 

of the Phascolarctobacterium genus came from one species, P. succinatutens, which is an obligately 

anaerobic and gram-negative bacterium and colonizes the human gut(Ikeyama et al., 2020). We next 

analyzed the P. succinatutens smRNA data to understand whether it contained any intra-population 
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functional heterogeneity in transcriptional states. In the gut microbiome, we identified three major 

subpopulations in both replicates using an unsupervised clustering approach (Fig. 4A) and further 

identified the DEGs among the three subpopulations (Fig. 4B; Table S5).  

Among the cells from P. succinatutens, 22% of them fell into the subpopulation 1. Based on 

differential expression analysis, we found the DEGs related with mobile genetic elements (MGEs), 

e.g., ISClte1, IS663, ISL7, which promote the evolution of antibiotic resistance, had significantly 

higher expression levels in the subpopulation (Figs. 4B and S5A). Interestingly, we indeed found that 

many multidrug resistance genes, e.g., mdtB, mdtC, mdtG, mdtK, and adaptive cellular responses 

related genes, e.g., rcsC1, rcsC2, were up-regulated in the subpopulation 1. The result provides a 

possible explanation for the subpopulation’s elevated multidrug resistance frequencies, and 

resistance likely is emerging from this subpopulation. To test this hypothesis, we performed a gene 

expression co-occurrence analysis between the MGE genes and multidrug resistance genes. Based 

on the analysis, we observed that there was significant co-occurrence relationship between their 

expressions (Fig. 4C). We further measured the mutation frequencies in the subpopulation 1 of P. 

succinatutens. The results confirmed the hypothesis, i.e., the intrinsic functional heterogeneity 

driven by MGEs may promote the evolution of antibiotic resistance in P. succinatutens. 

   Based on DEG analysis, we found that genes in succinate pathway, e.g., mutB, pccB, significantly 

high expressed in P. succinatutens in subpopulation 2 (Figs. 4B and S5B). Previous studies suggested 

that P. succinatutens uses succinate as a substrate rather than carbohydrates for growth in an 

energy-limited environment as one strategy to survive in the human gut(Ikeyama et al., 2020). 

Therefore we further investigated the expression level of the genes related with succinate 

metabolism pathways in P. succinatutens (Fig. 4D). Interestingly, among the genes involving main 

steps of succinate metabolism, such as succinyl-CoA and methylmalonyl-CoA, most of them had 

significantly higher gene expression level in the subpopulation 2. The results suggested that the 

ability of chemical energy conversion via succinate was significantly increased in the subpopulation. 

Taken together, our smRandom-seq2 data revealed different adaptive strategies of asaccharolytic 

bacteria (e.g., P. succinatutens) in the human gut. 

 

Host-phage activity associations in the human gut microbiome 

Bacteriophages play extensive and important interactive regulatory roles in the human gut 

microbiome(Shkoporov et al., 2022). Given that smRandom-seq2 can simultaneously encapsulate 

bacteria as well as its associated phages, we further used MIC-Phage to investigate the host-phage 

interactive transcriptional relationships in the human gut microbiome at single microbe level. We 

filtered out rRNA/tRNA sequences and then compared the smRandom-seq2 data to the Gut Phage 

Database(Camarillo-Guerrero et al., 2021) (GPD). We totally obtained 11.26% unique mapping reads 

of all the smRNAs in the human gut microbiome to the GPD database. Based on the taxonomic 

annotation results generated by MIC-Anno, we acquired a phage transcriptional profile from nine 

major genera in the human gut microbiome. The number of phages identified from per bacterium in 

each genus was 15 to 25. The ratio of phage-related sequences identified was different among the 

genera, from Faecalibacterium with the highest 19.2% phage-related sequences to the lowest 2.5% 

in the Clostridium (Fig. 5A). We clustered the bacterial cells using UMAP based on transcriptional 

profiles of both phage and bacteria (Fig. 5B). Surprisingly, a very discriminative clustering result was 
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achieved and the UMAP cell clusters matched extremely well with the nine major genera. Moreover, 

even it was further subdivided phage sequences from genus to species level, cell clustering and 

taxonomic information still had an excellent consistence (Fig. S6). 

According to the above clustering results, we further counted the phage-related UMIs to 

determine expression level information of main phage types in each genus. In order to verify the 

accuracy of the host-phage connectivity, we selected top 20 phages with the most transcriptional 

activity in each genus (a total of 180 phages) identified by MIC-Phage. We estimated sequence 

similarity by mapping the phage to the all reference genomes of the corresponding bacterial genus. 

As expected, all of the 180 phage genomes could be mapped into the reference genome with a 

threshold of alignment length for reliable relationship prediction (Fig. 5C). These results suggested 

that MIC-Phage could detect the host-phage activity associations in human gut microbiome 

accurately. In totally, 373 reliable host-phage relationships were identified in this study (Fig. 5D). 

Among the host-phage relationships, at least 325 were newly identified by this study, and the rest 48 

same to the predicted genus-level relationships by GPD (Table S6). Notably, the significant difference 

of expression level of phage-related genes among genera reflected the characteristics and ability of 

phage-specific infection (Figs. 5B and S6). Taken together, the results demonstrated the advantages 

of smRandom-seq2 to establish accurate in vivo host-phage activity connectivity. 

 

Application of smRandom-seq2 on three more human gut microbiomes 

To further validate and extend the generalizability of smRandom-seq2 in real-world situations, we 

went on to perform smRNA-seq in three fecal samples from healthy human subjects. In total, 21,264 

cells were captured from the three samples, with an average depth of 13,380 reads per cell. Based 

on the annotation of MIC-Anno, the three healthy donors had distinct dominant bacteria 

genus/species in their guts, Prevotella/P. copri in one donor, Neobittarella/N. massiliensis in one 

donor, and Phocaeicola/P. coprocola in another one donor, respectively (Fig. 6A–C). The UMAP cell 

clusters based on the gene expression profiles of the samples matched well with the bacteria genus 

and species annotated above (Fig. 6A-C). Subpopulations could be identified in some dominant 

species (Prevotella copri and Phocaeicola dorei, etc.) (Fig. 6A and 6B). Meanwhile, we totally 

identified 256 reliable host-phage activity relationships from the healthy donors using MIC-Phage 

(Fig. 6D). All these results suggested that smRandom-seq2 could adapt to various human gut 

microbiomes with distinct microbe communities and efficiently capture different bacteria species in 

real-world situations. 

 

Discussion 

Several bacterial scRNA-seq methods have been developed recently, including plate-based 

techniques like microSPLiT(Kuchina et al., 2021), PETRI-seq(Blattman et al., 2020), MATQ-seq(Imdahl 

et al., 2020) and probe-based methods like par-seqFISH(Dar et al., 2021), ProBac-seq(McNulty et al., 

2023), and droplet-based methods like BacDrop(Ma et al., 2023), smRandom-seq(Xu et al., 2023a). 

These developments are timely and important. For instance, Kuchina et al. developed microSPLiT 

and applied it to Bacillus subtilis sampled at different growth stages, and identified the 
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heterogeneous activation of a niche metabolic pathway(Kuchina et al., 2021). Ma et al. applied 

BacDrop to study Klebsiella pneumoniae clinical isolates and to elucidate their heterogeneous 

responses to antibiotic stress(Ma et al., 2023). Dar et al. applied par-seqFISH to the opportunistic 

pathogen Pseudomonas aeruginosa across dozens of conditions in planktonic and biofilm cultures, 

and identified numerous metabolic- and virulence-related transcriptional states that emerged 

dynamically during planktonic growth(Dar et al., 2021).  

The currently available techniques however are usually focused on single well-characterized 

bacteria species, which are not adapt to human microbiome research because of the complexity of 

natural microbial communities. There are several critical challenges when it comes to clinical- and 

physiology-relevant human complex microbiome samples: (1) The composition of human microbial 

community is much more complicated than cultured bacteria, which causes the capture efficiency of 

common random primers significantly decreased, leads to the bacteria capture bias and results in a 

low number of species and genes detected in the microbial community samples. (2) Compared with 

cultured bacteria, microbial community samples are more prone to bacterial aggregation leading to 

serious cross contamination in the microbial community sequencing. (3) The digestion of different 

bacterial cell walls in microbial community samples leads to the presence of bias, which can result in 

fewer detected bacterial species. (4) The human gut microbiome samples contains huge amount of 

impurities that will interfere with the experiment processes and reactions. (5) Bioinformatics tools 

are not available for dealing with scRNA data from a complex microbiome. There are many 

challenges to identify single microbe and bacteria(host)-phase associations based on the limited RNA 

reads. 

In our latest study, we developed a droplet-based high-throughput and high-sensitivity smRNA-

seq method (smRandom-seq2) for complex microbial communities. As compared to the existing 

smRNA-seq methods, smRandom-seq2 overcomes the challenges of high species diversity and 

heterogeneity that are ubiquitously present in real-world microbiome samples. The key behind 

smRandom-seq2’s advances is: (1) In smRandom-seq2, the novel design of random primers 

significantly increases the efficiency of reverse transcription for all bacteria species. We have 

screened hundreds of different random and semi-random primer designs, and a set of GAT random 

primers with the highest efficiency was ultimately selected. (2) In smRandom-seq2, the pre-index 

based experiment process significantly reduces cross-contamination in the single microbe 

sequencing of complex microbial communities. We introduced the pre-index design on the GAT 

random primers to reduce the cross-contamination caused by bacterial aggregation. Based on the 

pre-index strategy, we can distinguish two bacteria even if they were included in the same droplet. 

And our results showed that the mean species purity of barcodes is higher than 95% in smRandom-

seq2, which is very hard to achieve by other methods on complex microbiomes. (3) Previous single 

microbe sequencing platforms, like BacDrop and other droplet based single bacterial sequencing 

technologies are developed based on the 10× Genomics single cell barcoding platform, which were 

primarily developed for eukaryote (like human or mouse) single cells and were not efficient for 

single microbe barcoding due to the much smaller size of microbes and huge amount of impurities 

existed in microbiome samples. In smRandom-seq2, we developed a high barcoding efficiency 

droplet platform specifically suitable for the complex microbiome single microbe sequencing. (4) In 

smRandom-seq2, we also developed a novel computational pipeline for single microbe analysis in 

complex microbial community. This computational method at the first time solved the problem of 

multiple species single cell analysis, and extremely suitable for the single microbe sequencing in 
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complex microbial communities. By pooling the smRNA-seq data by smRandom-seq2, we are able to 

obtain accurate taxonomic information for each microbe and further bacterial and host-phage 

association analysis. Due to the above improvements by this study, we were able to make it possible 

for single microbe sequencing in human gut microbiome samples. Compared to the existed single 

microbe RNA sequencing methods, such as microSPLiT (median UMI: 235, median gene: 138), PETRI 

(median UMI: 227, median operon: 103), MATQ-seq (mean gene: 170), BacDrop (mean gene: 90), 

the UMI and the gene number per cell of smRandom-seq2 (median UMI: 1,158, median gene: 246) is 

superior (Fig. S7). 

Indeed, the applications of smRandom-seq2 on human fecal samples demonstrated that 

smRandom-seq2 could sensitively dissect functional heterogeneity existed in complex microbial 

community and identify host-phage activity relationships at genus and species level. smRandom-

seq2 can also simultaneously identify hundreds of bacterial species (many poorly known) from the 

human gut, highlighting its unique advantages in the depth and scope of species coverage, and also 

its efficiency. By applying smRandom-seq2 in human fecal samples, we have generated tens of 

thousands of human single-microbes which the research community can readily access and utilize. 

Together, our results support that smRandom-seq2 has the potential for a variety of biomedical and 

even clinical researches, from understanding the microbiome functional changes, bacteria dynamic 

communications, to bacteria metabolic networks and host-microbiome interactions and so on. We 

also aim smRandom-seq2 to be highly user friendly and cost-effective, enabling many labs and 

hospitals to rapidly adapt smRandom-seq2 for their research and discovery needs, or even clinical 

management needs in the future. Furthermore, the ability for smRandom-seq2 to capture 

microbiome transcriptional status in single microbe resolution promises new avenues for the 

understanding of complex microbial communities and their functional impact to human health.  

Based on the systematically phage analysis in single microbes, we found majority of the phages 

were related with actively transcribed prophages. After further investigations, we found a vast 

majority of these phage-aligned reads (over 85%) can be mapped to bacterial genomes. This 

indicates that the majority viruses are at prophage status, and the transcription activity of prophages 

was significantly related with the adaptive states of the bacteria in human gut microbiome. Among 

the 373 reliable predicted host-phage relationships we identified, each phage species is essentially 

associated with a specific bacterial genus. Only 8 bacteriophages exhibit associations with multiple 

bacterial genera. Many of these phages among them are uncultivable, thus a substantial portion 

lacks taxonomic and genomic information in the dataset (only 16,636 out of 142,809 phages possess 

family-level information). Among the 373 host-phage relationships we identified in gut microbiome 

sample, we identified 18 relationships involve hosts and phages with clearly identified taxonomic 

information. These phages primarily belong to Caudovirales order and one Microviridae family 

bacteriophage. These 18 relationships are all consistent with the current research findings and 

predictive results(Mayneris-Perxachs et al., 2022, Fujimoto et al., 2021, Manrique et al., 2016). In 

addition, we uncovered that these prophage-related bacterial functional genes primarily engage in 

pivotal functional pathways, notably arginine and tryptophan metabolism. Remarkably, these 

findings align with the research documented by Kosuke et al(Fujimoto et al., 2021). Additionally, 

some functional genes such as htpG exhibit a correlation with bacterial stress protection, suggesting 

their potential role in enhancing the coexistence of bacteria with prophages that support resilience. 
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There are several potential avenues for further improvement and expansion of our technique. 

Firstly, although smRandom-seq2 could capture thousands of single microbes in microbiome 

samples, the throughput is still far from the real bacteria number in natural microbial communities. 

And the design with more barcodes and smaller droplets has the potential to substantially increase 

the throughput of this method. Secondly, the development of a universal rRNA depletion method 

would avoid the sequencing of non-messenger transcripts, thus reducing the cost for sequencing. In 

smRandom-seq2, we detected a ribosomal RNA (rRNA) proportion ranging from 75% to 95% among 

the samples. Even without rRNA depletion, we observed a higher number of genes compared to 

existing single-bacteria RNA sequencing methods, and we have not yet reached saturation which 

suggested more genes could be captured when the sequencing depth increased (Fig. S8A). Thirdly, it 

is possible that the different clusters within the same taxonomic group represent different strains in 

the same species. The reason is that the single microbe annotation method (MIC-Anno) could only 

classify the barcode into species taxon level. So the different clusters could represent the 

transcriptional/functional differences between the clusters in one species, which could be both the 

same or different strains. Fourthly, exploration of additional capture and separation methods for 

both host and microbe cells could enable dissect the transcriptional activity in both human cells and 

single microbes in the same sample, leading to deep understanding of the host-microbe interactions 

in the human gut. Furthermore, combining smRandom-seq2 with other multi-omics techniques, such 

as proteomics and metabolomics, will able to capture the functional changes of single microbes in 

multiple layers, and significantly advance our understanding about the complex interplay between 

the microbes and host in human health and disease.   

 

Materials and methods 

Bacterial culture and collection 

The bacteria used for the experiment are Escherichia coli BW25113 (E. coli), Acinetobacter 

baumannii ATCC17978 (A. baumannii), Klebsiella pneumoniae XH209 (K. pneumoniae), Pseudomonas 

aeruginosa PAO1 (P. aeruginosa) and Staphylococcus aureus subsp. Aureus SA268 (S. aureus), which 

were obtained from Sir Run Run Shaw Hospital, Zhejiang University School of Medicine. The bacteria 

were cultured overnight in LB liquid medium (Sigma Aldrich, L3522) at 37°C with shaking (250 rpm). 

Based on the purpose of different experiment, cultures of different bacterial stain were sampled 

upon reaching the OD600 ~0.2, and immediately centrifuged at 4°C, 6,000 ×g for 2 min, next washed 

twice by PBS, and mixed before applied with smRandom-seq2. 

Human fecal sample collection 

The fecal samples were collected from four healthy donors. The study protocol was approved 

by the Ethics Committee of the First Affiliated Hospital, Zhejiang University School of Medicine, 

China (2021IIT A0239). All the participants provided written informed consent. The samples were 

centrifuged twice at 4°C, 500 ×g for 3 min to eliminate impurities from the digested food or host 

cells. The obtained samples were then centrifuged at 4°C, 3,900 ×g for 5 min to collect the bacteria, 

ensuring high purity. The bacteria collected were used for further smRandom-seq2 or stored at 

−80°C until needed for additional metagenomic sequencing. 
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Fixation and permeabilization 

The bacteria were first fixed with 4% paraformaldehyde (PFA) at 4°C overnight, which helps to 

preserve their structure and prevent degradation. Next, the cells were washed and incubated with 

0.04% Tween-20 in PBS. This detergent helps to create small pores or holes in the bacterial cell 

membrane, allowing other molecules like enzymes to enter the cell. Then, the cell wall was 

permeabilized with lysozyme (2.5 mg/mL, ThermoFisher, 90082) and lysostaphin (0.0125 mg/mL, 

Sigma, L7386). Lysozyme is an enzyme that breaks down the peptidoglycan layer in bacterial cell 

walls, while lysostaphin is an enzyme that specifically targets and breaks down the cell walls of 

Staphylococcus species. After the digestion step, the bacteria were immediately washed and 

resuspended in PBS with RNase inhibitor (ThermoFisher, Cat#AM2694), which helps to protect any 

RNA present in the sample from degradation by RNases. For the cell loss problem, we conducted a 

comprehensive evaluation of various centrifugation protocols to mitigate cell loss. We explored a 

range of centrifuge types, including those with horizontal and angled rotors, varied capacities of 

centrifuge tubes, and diverse centrifugation reagents. After a systematic optimization, we identified 

that employing a centrifuge with a horizontal rotor, using 200 μl EP tubes, and resuspending cells in 

0.05% PBST (Phosphate-Buffered Saline with Tween 20) prior to centrifugation yielded the most 

favorable results. Upon completing the experimental workflow, we were able to retain over 40% of 

the initial bacterial population, as shown in Fig. S8B. 

Reaction in situ 

In situ reactions of bacteria was carried out using a commercially available reverse transcription kit 

from M20 Genomics (R20114124). The kit contained reverse transcriptase (50 U/µL), 5× reverse 

transcription buffer, and dNTP Mix (100 mmol/L). A 50-µL reaction mixture was prepared, consisting 

of about 5 million bacteria in 27.5 µL DEPC water, 10 µL 5×reverse transcription buffer, 5 µL 10 

µmol/L random primer (Table S5), 2.5 µL 100 mmol/L dNTP, 2.5 µL RNase inhibitor, and 2.5 µL 

reverse transcriptase (50 U/µL), and subjected to ten cycles of multiple annealing ramping from 8°C 

to 42°C, followed by a 42°C incubation for 30 min in a thermal cycler. After the RT reaction, bacteria 

were washed five times with 0.05% PBST. The bacteria were then subjected to dA tailing by adding 

them to 39 µL DEPC water, followed by the addition of 5 µL 10× TdT buffer, 5 µL 2.5 mmol/L CoCl2, 

0.5 µL 100 mmol/L dATP, and 0.5 µL TdT enzyme, and incubated at 37°C for 30 min. The bacteria 

were subsequently washed with PBST three times.  

Microfluidic device fabrication 

Microfluidic devices based on PDMS were designed and fabricated for the synthesis of hydrogel 

beads, following a previously described protocol(Wang et al., 2020). The channel depth of the 

microfluidic devices used for hydrogel bead synthesis was 30 μm, while the devices used for cell 

encapsulation had a channel depth of 50 μm. To create molds for the microfluidic devices, a 

photolithographic method was employed, involving centrifugal coating and modeling of SU-8. 

Subsequently, PDMS (Sylgard-184) was cast onto the silicon molds to fabricate the microfluidic 

devices. 
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Microfluidic platform 

   A microfluidic platform for barcoding of single bacteria was established based on previous 

work(Wang et al., 2020). The platform equipment comprises display monitors, a pressure controller, 

a microfluidic chip, and an inverted bright-field microscope equipped with a high-speed camera and 

a computer for data acquisition and analysis. 

Barcoded beads synthesis 

Hydrogel barcoded beads for single bacterium barcoding were developed based on previous 

studies and were customized by M20 Genomics company(Wang et al., 2020, Ko et al., 2021). These 

hydrogel beads were synthesized using microfluidic emulsification and polymerization of an 

acrylamide-primer mix that includes acrylamide:bis-acrylamide solution, acrydite-modified 

oligonucleotides, ammonium persulfate, and Tris-buffered saline-EDTA-Triton buffer. The acrydite-

modified oligonucleotides contain a deoxy Uridine base, replacing the photocleavable moiety 

present in previous reports. A carrier oil-TEMED mix was applied in microfluidic to facilitate 

synthesis. The acrylamide-primer mix and carrier oil-TEMED mix were transferred to syringes, 

respectively, and connected to corresponding inlets of the hydrogel bead synthesis device. The 

generated hydrogel beads should have a size of 40 μm. The DNA primers on the hydrogel beads 

were barcoded using a combination of a split-and-pool method and a 3-step primer ligation reaction. 

Unique barcoded primers were used, and they were provided in the Table S6. Hydrogel bead mix, 

DNA ligase, dNTP, isothermal amplification buffer, and nuclease-free water were prepared and split 

into a round-bottom 96-well plate. The hydrogel bead mix in the 96-well plate was mixed with 96 

annealed unique barcode primers in another 96-well plate, respectively, and then incubated. All 

hydrogel beads were combined in a single tube and washed, and the second and third split-and-pool 

rounds were performed. To verify the quality of the generated hydrogel barcoded beads, barcoded 

primers were released by Uracil-specific excision reagent (USER) enzymatic digestion and analyzed 

with gel electrophoresis. The highest molecular-weight peak represents the full-length barcoding 

primer, and lower-molecular-weight peaks are synthesis intermediates. All the necessary reagents 

for hydrogel barcoded bead synthesis and the ready-to-use hydrogel barcoded beads can be ordered 

from M20 Genomics company. 

Droplet barcoding 

To perform the modified droplet barcoding for single bacterium, qualified individual bacteria 

were first counted under an optical microscope and then diluted with a 15% density gradient 

solution. Before droplets generation, we quantified the bacterial count through microscopy, as 

depicted below. We then appropriately diluted the sample to achieve an optimal concentration for 

the microfluidic loading procedure. We optimized the loading approach to achieve approximately 

30% of droplets containing bacteria, as opposed to the traditional loading strategy where only 10% 

of droplets contained cells. This method ensures that the majority of bacteria are enclosed within 

individual droplets. Additionally, the overloaded bacteria can be distinguished through the pre-index 

sequence. The microfluidic platform was used to encapsulate bacteria, 2× DNA extension reaction 

mix, and hydrogel barcoded beads. Both the density gradient solution and 2× DNA extension 

reaction mix were obtained from M20 Genomics. The collected droplets were subjected to a series 

of incubation steps at different temperatures: 37°C for 1 h, 50°C for 30 min, 60°C for 30 min, and 

75°C for 20 min. The droplets were then broken by mixing with PFO buffer, and the oil phase was 
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discarded. The aqueous phase containing cDNAs was purified using Ampure XP beads. We achieved 

a promising 76% success rate in generating unique barcodes for individual bacterial cDNAs, and only 

2% droplets containing two or more beads. After the loading process, about 55% of the beads 

without bacteria, and around 0.6% of the bacteria remained without any beads.  

cDNA enrichment 

After cDNA purification, a qPCR reaction was performed to determine the cycle numbers 

required for cDNA enrichment. The cycle numbers at which the qPCR reaction reached the early 

exponential amplification phase were identified as the cycle numbers for cDNA enrichment. 

Subsequently, PCR amplification was carried out using specific primer sets (Table S1). The resulting 

PCR products were purified again using Ampure XP beads, and the purified cDNAs was quantified 

using Qubit.  

Library preparation 

For library preparation, we used the VAHTS Universal DNA Library Prep Kit for Illumina V3 

(ND607-03/04 Vazyme). The amplified and purified cDNAs were quantified using a Qubit2.0 and 

analyzed using the Qsep100™ DNA Fragment Analyzer. End-repair and adenylation were performed 

on the qualified cDNAs using a reaction mixture containing 50 ng fragmented DNA, end repair 

enzymes, end repair buffer, and nuclease-free water. The reaction mixture was incubated at 30°C for 

30 min and then inactivated at 65°C for 30 min. After adding working adaptor and ligation enzymes, 

the mixture was incubated at 20°C for 15 min, and the ligated DNA was then purified and selected 

using AMPure XP beads. The library was then amplified by PCR and purified again using AMPure XP 

beads. Finally, the qualified cDNA library was quantified using a Qubit2.0 and analyzed using the 

Qsep100™ DNA Fragment Analyzer, before being sequenced using the NovaSeq 6000 and S4 

Reagent Kit with paired-end reads of 150. 

Library generation and analysis for metagenome sequencing  

DNA was extracted from frozen fecal samples using a TIANamp Micro DNA kit (DP316, Tiangen 

Biotech) according to the manufacturer's recommendations. Agilent 4200 TapeStation (Agilent 

Technologies) was used to assess DNA quality. DNA libraries were carried out by a standardized 

procedure for DNA fragmentation, end repair, adapter ligation, and PCR amplification. Agilent 

Bioanalyzer 2100 was used to assess library quality. Whole-genome shotgun sequencing of fecal 

samples was performed on an Illumina Hiseq2500 platform. All samples were paired-end sequenced 

with a 150-bp read length to a targeted data size of 5.0 Gb. Metagenome data process: Sequence 

reads were passed through the KneadData QC pipeline, which incorporates the Trimmomatic and 

BMTagger filtering and decontamination algorithms to remove low-quality read bases and reads of 

human origin, respectively: 1) trim non-human reads shorter than 50 nucleotides; 2) exclude 

samples with <500,000 microbial reads. Taxonomic profiling was performed using the MetaPhlAn2 

classifier. The classifier relied on approximately 1 million clade-specific marker genes derived from 

>10,000 microbial genomes to unambiguously classify reads to taxonomies and yield the relative 

abundances of the taxa identified in the sample. 
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Single microbe analysis pipeline for microbial community  

Single microbe annotation algorithm (MIC-Anno): We first determined the cut-off values by the 

analysis of barcode and gene count scatter plots. We identified a point of inflection in the scatter 

plot that helped us select cells for further analysis. The portion of genes associated with cells located 

beyond this inflection point was automatically filtered out. In this method, we adopted a K-mer 

based root to leaf taxonomic classification strategy. We first applied Kraken2(Lu et al., 2022), a K-

mer based reads classification methods, on every reads in each barcode based on UHGG 

(v2.0.1)(Almeida et al., 2021) gut microbiome genome database. After all the reads were assigned 

into each nodes of different taxonomic levels (i.e., order, family, genus, species), we calculate the 

sum of reads in each node from the leaf to the root. Then we performed the taxonomic classification 

from the root to leaf taxonomic levels. In the root taxonomic level, we ranked all the nodes from the 

highest to lowest based on the reads number of the nodes, and selected the node with most reads 

number as potential annotation candidate. Based on the annotation result, then we performed the 

same annotation process in the next lower taxonomic level, until to the leaf nodes (species level). To 

evaluate the significance of the results, we also calculate the P-value for the prediction results of 

each node. We tested the MIC-Anno method in the mock community, and the results showed that it 

could precise annotate each barcode.  

Single microbe bacteria analysis pipeline (MIC-Bac): In the single microbe sequencing dataset, 

we identified hundreds of bacteria species in each microbiome sample, and some species could be 

only detected few barcodes. So to further investigate the functional heterogeneity in species, we 

only keep the abundant bacteria species (>3% total barcodes) for the downstream analysis. And it 

will be optional for the users to include all the genera in the analysis. First, we trimmed primer 

sequences and extra bases generated by the dA-tailing step in raw pair-end sequencing data. Then 8 

bp UMI and 20 bp cell-specific barcode were extracted from R1 end sequencing file and merged as 

the same accepted barcode with a Hamming distance of 2 bp or less. And R2 end file was used to 

generate the bacterial gene expression matrix by STAR (v2.7.10a)(Dobin et al., 2013) , featureCounts 

(v2.0.3)(Liao et al., 2014) and umi_tools (v1.1.2)(Smith et al., 2017) with reasonable parameters and 

whole UHGG (v2.0.1)(Almeida et al., 2021) gut microbiome genome as the reference. The high 

quality and unique mapped reads were preserved to count UMIs for each barcode. Given that excess 

taxonomic types may produce noise to downstream analysis, we preserved rational amount of major 

genera for the sample based on the species annotation result of MIC-Anno. And then we utilized 

dimensional reduction of single-cell expression vectors, followed by graph-based clustering and 

analysis of differentially expressed genes using the Seurat (v4)(Hao et al., 2021) package and a two-

sided Wilcoxon rank-sum test with Bonferroni correction to identify unique cellular transcriptional 

differences(Kopylova et al., 2012). To detect the SNPs in each subpopulation, we first combined all 

the sequencing reads of each barcodes in one subpopulation, and then used software Bowtie2 to 

map the reads to the reference genome of the corresponding bacteria species, and used the 

software GATK to call the SNPs in each subpopulation. 

Single microbe phage analysis pipeline (MIC-Phage): To contrast a transcriptional correlated 

matrix of phage and bacteria, we first built a phage related gtf file for GPD genome sequences, which 

was a part of input of STAR (v2.7.10a)(Dobin et al., 2013). Second, we filtered out vast majority of 

rRNA and tRNA reads by SortMeRNA(Kopylova et al., 2012) for the quality controlled data. Then we 

used STAR to align reads and the unique map reads were counted by featureCounts (v2.0.3)(Liao et 
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al., 2014). Finally we utilized umi_tools (v1.1.2)(Smith et al., 2017) to count UMIs and build the 

matrix. We used Seurat with reasonable parameters and removed the barcode with taxonomic 

information which bacteria belonging to this genus fewer than 3% in this sample further clustering 

and running dimensional reduction for visualization. Genus-related phages were identified following 

the steps of Seurat FindMarkers function and the logFC.threshold was set 0.1. For the top 20 phages 

of each genus we used blastn to compare the reference viral genome to UHGG (v2.0.1) genus 

reference genome. The solid prediction of host-phage correlation must have at least 3 kb alignment 

length and above 80% idents of both genomes. 
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Figure legends: 

Figure 1. Overview of smRandom-seq2 and data analysis. First part is experimental methodology 

and workflow of smRandom-seq2. The second part is a single microbe data analysis pipeline for 

smRandom-seq2 data. After taxonomic annotation (MIC-Anno), each cell (barcode) will be assigned 

a taxonic information, and further clustered and heterogeneity and host-phage association analysis 

using MIC-Bac and MIC-Phage. 

Figure 2. Performance of smRandom-seq2 on a mock microbial community with five known 

species. (A) UMAP plot of the smRandom-seq2 cells and clusters colored by species. (B) Distribution 

of gene count of the five bacterial species clusters by smRandom-seq2. The median gene count of 

each species is presented at the top of the violin plot. The mock community includes A. baumannii 

(A. b), E. coli (E. c), K. pneumonia (K. p), P. aeruginosa (P. a), and S. aureus (S. a). 

Figure 3. Bacterial gene expression landscape in a human gut microbiome. (A) Bacteria proportion 

of each genus identified in the smRandom-seq2 dataset. (B) UMAP plot of the smRandom-seq2 cells 

and clusters colored by genus taxonomic annotation using MIC-anno. (C) UMAP plot of the clusters 

colored by species of Prevotella and Roseburia genus. (D) Dot plot of significantly up-regulated genes 

in species in the Prevotella (left) and Roseburia (right) clusters. 

Figure 4. Functional heterogeneity in Phascolarctobacterium succinatutens in human gut 

microbiome. (A) UMAP plot shows three clusters (subpopulations) of P. succinatutens under 0.5 

resolution of Seurat package. (B) Dot plot shows significantly up-regulated genes in the three 

subpopulations of P. succinatutens. (C) Gene expression level correlations between the mobile 

genetic elements related genes and multidrug resistance genes in subpopulation 1. (D) The genes in 

subpopulation 2 significantly up-regulated (in red) in succinate metabolism pathways in P. 

succinatutens. ISClte1:IS3 family transposase ISClte1. IS663: IS1182 family transposase IS663. ISL7: 

IS30 family transposase ISL7. mdtK: Multidrug resistance protein MdtK. mdtG: Multidrug resistance 

protein MdtG. mdtB: Multidrug resistance protein MdtB. scpA: Methylmalonyl-CoA mutase. mutB: 

Methylmalonyl-CoA mutase large subunit. pccB: Propionyl-CoA carboxylase beta chain. 

Figure 5. Bacterial host-phage transcriptional activity associations in different genus in the human 

gut microbiome. (A) Number of phages identified (up) and the proportion of reads aligned to the gut 

phage reference genomes in GPD (down) in bacterial cells. The data of nine main bacterial genera 

were shown. (B) UMAP plot of cells from the human gut microbiome based on both phage and 

bacteria smRandom-seq2 data and clusters colored by genus taxonomic annotation using MIC-Anno. 

(C) Alignment length distribution of top 20 phages identified in the nine genera based on the GPD 

reference genomes. Alignment length longer than 3 kb (red dashed line) is considered as an accurate 

prediction of host-phage relationship. Top chart indicated the prediction accuracy (%) of host-phage 

transcriptional associations. The rank of the nine genera is same as the above subfigure A. (D) Host-

phage associations identified in the nine bacterial genera by this study. Beside of those same to the 

predicted ones by GPD, at least 325 associations were newly identified by this study. 

Figure 6. Single-microbe transcriptional landscape and host-phage associations of gut microbiome 

in more healthy donors. (A–D) UMAP plot of smRandom-seq2 data clusters (A–C) and dot plot of 

host-phage associations (D) in three more healthy donors (HD1, HD2, HD3).  
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/proteincell/advance-article/doi/10.1093/procel/pw

ae027/7680103 by guest on 24 M
ay 2024


